III. Vận dụng
Một vật chuyển động với gia tốc \[a\left( t \right) = 3{t^2} + t{\rm{ }}\left( {m/{s^2}} \right)\]. Biết rằng vận tốc ban đầu của vật là \[2{\rm{ }}\left( {m/s} \right).\] Vận tốc của vật đó sau hai giây là.
A. \[{\rm{8 }}\left( {m/s} \right).\]
B. \[{\rm{12 }}\left( {m/s} \right).\]
C. \[{\rm{10 }}\left( {m/s} \right).\]
D. \[{\rm{16 }}\left( {m/s} \right).\]
Đáp án đúng là: B
Phương trình vận tốc của vật là \[v\left( t \right) = \int {a\left( t \right)} dt = \int {\left( {3{t^2} + t} \right)dt} = {t^3}{\rm{ + }}\frac{{{t^2}}}{2}{\rm{ + C}}{\rm{. }}\]
Mà vận tốc ban đầu của vật là \[2{\rm{ }}\left( {m/s} \right)\] hay \[v\left( 0 \right) = 2{\rm{ }}\left( {m/s} \right)\].
Do đó, ta có C = 2.
Suy ra \[v\left( t \right) = {t^3} + \frac{{{t^2}}}{2} + 2.\]
Vậy vận tốc của vật đó sau 2 giây là: \[v\left( 2 \right) = {2^3} + \frac{{{2^2}}}{2} + 2 = 12{\rm{ }}\left( {m/s} \right)\]
Cho các mệnh đề dưới đây:
(I). \[F\left( x \right) = \frac{{{x^4}}}{4} - \frac{3}{2}{x^2} + \ln \left| x \right| + C\] là nguyên hàm của hàm số \[f\left( x \right) = {x^3} - 3x + \frac{1}{x}.\]
(II). \[F\left( x \right) = \frac{{{{\left( {5x + 3} \right)}^6}}}{6} + C\] là nguyên hàm của hàm số \[f\left( x \right) = {\left( {5x + 3} \right)^5}\].
(III). \[F\left( x \right) = \frac{3}{2}x\sqrt x + \frac{4}{3}x\sqrt[3]{x} + \frac{5}{4}x\sqrt[4]{x} + C\] là nguyên hàm của hàm số
\[f\left( x \right) = \frac{{2{x^3}\sqrt x }}{7} - 2{x^2}\sqrt x + \frac{2}{3}x\sqrt x + C.\]
Số mệnh đề đúng trong các mệnh đề trên là
Cho hàm số \[f\left( x \right)\] thỏa mãn \[f'\left( x \right) = x + \sin x\] và \[f\left( 0 \right) = 1\]. Tìm \[f\left( x \right)\]
Cho hai hàm số \[f\left( x \right),g\left( x \right)\] là hàm số liên tục, có \[F\left( x \right),G\left( x \right)\] lần lượt là nguyên hàm của \[f\left( x \right),g\left( x \right)\]. Xét các mệnh đề sau:
(I). \[F\left( x \right) + G\left( x \right)\] là một nguyên hàm của \[f\left( x \right) + g\left( x \right).\]
(II). \[kF\left( x \right)\] là một nguyên hàm của \[kf\left( x \right)\] với \[k \ne 0.\]
(III). \[F\left( x \right).G\left( x \right)\] là một nguyên hàm của \[f\left( x \right).g\left( x \right)\].
Các mệnh đề đúng là
Tìm nguyên hàm của hàm số \[f\left( x \right) = {e^{3x}}\left( {1 - 3{e^{ - 5x}}} \right)\]
I. Nhận biết
Hàm số \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right)\] trên khoảng \[K\] nếu
Cho \[\int {f\left( x \right)dx = } F\left( x \right),{\rm{ }}\int {g\left( x \right)dx = G\left( x \right)} \]. Khi đó, \[I = \int {\left[ {2g\left( x \right) - f\left( x \right)} \right]dx} \] bằng
II. Thông hiểu
Nguyên hàm của hàm số \[f\left( x \right) = \cos 3x\] bằng
Hàm số \[F\left( x \right) = 2\sin x - 3\cos x + 1\] là một nguyên hàm của hàm số nào sau đây?
Một vật chuyển động đều với vận tốc có phương trình \[v\left( t \right) = {t^2} - 2t + 1\], trong đó \[t\] được tính bằng giây, quãng đường \[s\left( t \right)\] được tính bằng mét. Khi đó:
a) Quãng đường đi được của vật sau 2 giây là \[\frac{2}{3}{\rm{ }}\left( m \right).\]
b) Quãng đường đi được của vật khi gia tốc bị triệt tiêu là \[\frac{1}{3}{\rm{ }}\left( m \right).\]
c) Quãng đường vật đi được trong khoảng từ 2 giây đến thời điểm mà vận tốc đạt \[9{\rm{ }}\left( {m/s} \right)\] là \[\frac{{26}}{3}{\rm{ }}\left( m \right).\]
d) Quãng đường vật đi được từ 0 giây đến thời gian mà gia tốc bằng \[{\rm{10 }}\left( {m/{s^2}} \right)\] là \[{\rm{44 }}\left( m \right)\].
Trong các khẳng định trên, có bao nhiêu khẳng định đúng?
Cho hàm số \[y = f\left( x \right)\] có đạo hàm \[f'\left( x \right) = 12x + 2\] với mọi \[x \in \mathbb{R}\] và \[f\left( 1 \right) = 3.\] Biết \[F\left( x \right)\] là nguyên hàm của \[f\left( x \right)\] thỏa mãn \[F\left( 0 \right) = 2\]. Tính giá trị của \[F\left( 1 \right).\]
Nguyên hàm của hàm số \[f\left( x \right) = {x^2} - 3x + \frac{1}{x}\] là
Cho \[F\left( x \right)\] là một nguyên hàm của hàm số \[f\left( x \right) = {e^x} + 2x\] thỏa mãn \[F\left( 0 \right) = \frac{3}{2}.\] Tính \[F\left( 1 \right) + F\left( 2 \right).\]
Họ nguyên hàm của hàm số \[f\left( x \right) = \frac{1}{{{x^2}}} - {x^2} - \frac{1}{3}\] là