Thứ sáu, 03/01/2025
IMG-LOGO

Câu hỏi:

03/11/2024 9

Gọi (H) là hình phẳng giới hạn bởi đồ thị \[\left( C \right):y = \frac{{{x^2} + 1}}{x}\], trục \[Ox\] và hai đường thẳng \[x = 1,x = 3\]. Thể tích V của vật thể tròn xoay khi (H) quay quanh trục \[Ox\] thỏa:

Gọi (H) là hình phẳng giới hạn bởi đồ thị  ( C ) : y = x^2 + 1/x , trục  O x  và hai đường thẳng  x = 1 , x = 3 . Thể tích V của vật thể tròn xoay khi (H) quay quanh trục  O x  thỏa: (ảnh 1)

A. \[16 < V < 17.\]

B. \[41 < V < 42.\]

Đáp án chính xác

C. \[13 < V < 14.\]

D. \[5 < V < 6.\]

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: B

Ta có: \[V = \pi \int\limits_1^3 {{{\left( {\frac{{{x^2} + 1}}{x}} \right)}^2}} dx = \pi \int\limits_1^3 {\left( {{x^2} + 2 + \frac{1}{{{x^2}}}} \right)dx} \]

\[ = \left. {\pi \left( {\frac{{{x^3}}}{3} + 2x - \frac{1}{x}} \right)} \right|_1^3 = \frac{{40\pi }}{3} \approx 41,89\].

Vậy \[41 < V < 42.\]

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một li rượu có hình dạng tròn xoay và kích thước như hình vẽ, thiết diện dọc của cốc (bổ dọc cốc thành 2 phần bằng nhau) là một đường parabol.

Thể tích tối đa mà cốc có thể chứa được là (làm tròn kết quả đến hai chữ số thập phân).

Xem đáp án » 03/11/2024 13

Câu 2:

Cho hình (H) là hình phẳng được tô đậm trong hình vẽ và được giới hạn bởi các đường có phương trình \[y = \frac{{10}}{3}x - {x^2}\], \[y = \left\{ \begin{array}{l} - x,{\rm{ }}x \le 1\\x - 2{\rm{, }}x > 1\end{array} \right.\].

Cho hình (H) là hình phẳng được tô đậm trong hình vẽ và được giới hạn bởi các đường có phương trình  y = 10/3 x − x^2 ,  y = { − x , x ≤ 1 x − 2 , x > 1 . (ảnh 1)

Diện tích của hình (H) bằng

Xem đáp án » 03/11/2024 12

Câu 3:

Cho hình phẳng (H) giới hạn bởi các đường \[y = {x^2} - 2x\], trục hoành, trục tung và đường thẳng \[x = 1.\] Tính thể tích V của khối tròn xoay khi quay (H) quanh trục \[Ox.\]

Cho hình phẳng (H) giới hạn bởi các đường  y = x^2 − 2 x , trục hoành, trục tung và đường thẳng  x = 1.  Tính thể tích V của khối tròn xoay khi quay (H) quanh trục  O x . (ảnh 1)

Xem đáp án » 03/11/2024 10

Câu 4:

I. Nhận biết

Thể tích \[V\] của khối tròn xoay giới hạn bởi đồ thị hàm số \[y = f\left( x \right)\], trục \[Ox\] và hai đường thẳng \[x = a,x = b{\rm{ }}\left( {a < b} \right)\] khi quay quanh trục \[Ox\] là:

Xem đáp án » 03/11/2024 9

Câu 5:

Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = \ln x,{\rm{ }}y = 1\] và hai đường thẳng \[x = 1,x = e\] bằng

Xem đáp án » 03/11/2024 9

Câu 6:

Cho hình phẳng D giới hạn bởi đường cong \[y = \sqrt {2 + \cos x} \], trục hoành và các đường thẳng \[x = 0,x = \frac{\pi }{2}.\] Khối tròn xoay tạo thành khi D quay quanh trục hoành có thể tích V bằng:

Xem đáp án » 03/11/2024 9

Câu 7:

Cho hình (H) giới hạn bởi các đường \[y = {x^2},x = 1\] và trục hoành. Quay hình (H) quanh trục \[Ox\] ta được khối tròn xoay có thể tích là

Cho hình (H) giới hạn bởi các đường  y = x^2 , x = 1  và trục hoành. Quay hình (H) quanh trục  O x  ta được khối tròn xoay có thể tích là (ảnh 1)

Xem đáp án » 03/11/2024 9

Câu 8:

Diện tích \[S\] của hình phẳng giới hạn bởi đồ thị hàm số \[y = f\left( x \right)\], trục \[Ox\] và hai đường thẳng \[x = a,x = b{\rm{ }}\left( {a < b} \right)\] được tính theo công thức

</>

Xem đáp án » 03/11/2024 8

Câu 9:

Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\mathbb{R}.\] Gọi \[S\] là diện tích hình phẳng giới hạn bởi các đường \[y = f\left( x \right)\], \[y = 0,x = - 2,x = 3\] (như hình vẽ). Mệnh đề nào dưới đây là đúng?

Cho hàm số  y = f ( x )  liên tục trên  R .  Gọi  S  là diện tích hình phẳng giới hạn bởi các đường  y = f ( x ) ,  y = 0 , x = − 2 , x = 3  (như hình vẽ). Mệnh đề nào dưới đây là đúng? (ảnh 1)

Xem đáp án » 03/11/2024 8

Câu 10:

II. Thông hiểu

Diện tích hình phẳng giới hạn bởi đồ thị hàm số \[y = {\left( {x - 2} \right)^2} - 1\], trục hoành và hai đường thẳng \[x = 1,x = 2\] bằng

Xem đáp án » 03/11/2024 8

Câu 11:

Tính diện tích hình phẳng giới hạn bởi các đường \[y = {x^2} + 1,{\rm{ }}x = - 1,{\rm{ }}x = 2\] và trục hoành.

Xem đáp án » 03/11/2024 8

Câu 12:

Diện tích hình phẳng giới hạn bởi đồ thị các hàm số \[y = {x^3} - 6x,y = {x^2}\] (phần tô đậm trong hình sau) bằng:

Diện tích hình phẳng giới hạn bởi đồ thị các hàm số  y = x^3 − 6 x , y = x^2  (phần tô đậm trong hình sau) bằng: (ảnh 1)

Xem đáp án » 03/11/2024 8

Câu 13:

Tính diện tích hình phẳng giới hạn bởi các đường \[y = {x^2}\], \[y = - \frac{1}{3}x + \frac{4}{3}\] và trục hoành như hình vẽ sau:

Tính diện tích hình phẳng giới hạn bởi các đường  y = x^2 ,  y = − 1/3 x + 4/3  và trục hoành như hình vẽ sau: (ảnh 1)

Xem đáp án » 03/11/2024 8

Câu 14:

Chị Minh muốn làm một cái cổng hình parabol như hình vẽ dưới đây. Chiều cao \[GH = 4\] m, chiều rộng \[AB = 4\] m, \[AC = BD = 0,9\] m. Chi Minh làm hai cánh cổng khi đóng lại là hình chữ nhật \[CDEF\] tô đậm có giá là \[1200000\] đồng/m2, còn các phần để trắng để trang trí hoa có giá là \[900000\] đồng/m2. Hỏi tổng số tiền để làm hai phần nói trên gần nhất với số tiền nào dưới đây?

Chị Minh muốn làm một cái cổng hình parabol như hình vẽ dưới đây. Chiều cao  G H = 4  m, chiều rộng  A B = 4  m,  A C = B D = 0 , 9  m. Chi Minh làm hai cánh cổng khi đóng lại là hình chữ nhật  C D E F  tô đậm có giá là  1200000  đồng/m2, (ảnh 1)

Xem đáp án » 03/11/2024 8

Câu 15:

Gọi \[S\] là diện tích hình phẳng giới hạn bởi các đường \[y = f\left( x \right)\], trục hoành và hai đường thẳng \[x = - 3,x = 2\]. Đặt \[a = \int\limits_{ - 3}^1 {f\left( x \right)dx} ,{\rm{ }}b = \int\limits_1^2 {f\left( x \right)dx.} \]

Gọi  S  là diện tích hình phẳng giới hạn bởi các đường  y = f ( x ) , trục hoành và hai đường thẳng  x = − 3 , x = 2 . Đặt  a = 1 ∫ − 3   f ( x ) d x , b = 2 ∫ 1   f ( x ) d x . (ảnh 1)

Mệnh đề nào dưới đây là đúng?

Xem đáp án » 03/11/2024 7

Câu hỏi mới nhất

Xem thêm »
Xem thêm »