Điều kiện đề phương trình \[{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\] là phương trình mặt cầu là
A. \[a + b + c - d > 0.\]
B. \[{a^2} + {b^2} + {c^2} + d > 0.\]
C. \[{a^2} + {b^2} + {c^2} - d > 0.\]
D. \[{a^2} + {b^2} + {c^2} - d \ge 0.\]
Đáp án đúng là: C
Phương trình mặt cầu có dạng
\[{x^2} + {y^2} + {z^2} - 2ax - 2by - 2cz + d = 0\] với \[d = {a^2} + {b^2} + {c^2} - {R^2}.\]
Để xác định một mặt cầu khi và chỉ khi \[{R^2} = {a^2} + {b^2} + {c^2} - d > 0.\]
Trong không gian \[Oxyz\], cho điểm \[H\left( {1;2; - 2} \right)\]. Mặt phẳng \[\left( \alpha \right)\] đi qua \[H\] và cắt các trục \[Ox,Oy,Oz\] tại \[A,B,C\] sao cho \[H\] là trực tâm của tam giác \[ABC\]. Viết phương trình mặt cầu tâm \[O\] và tiếp xúc với mặt phẳng \[\left( \alpha \right)\].
Trong không gian \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2}\]\[ + 2x - 4y - 6z + m - 3 = 0\]. Tìm số thực của tham số \[m\] để mặt phẳng \[\left( \beta \right):\]\[2x - y + 2z - 8 = 0\] cắt \[\left( S \right)\] theo một đường tròn có chu vi bằng \[8\pi .\]
Trong không gian \[Oxyz\], cho mặt cầu \[\left( S \right):{\left( {x - 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z - 3} \right)^2} = 25\] và hình nón \[\left( H \right)\] có đỉnh \[A\left( {3;2; - 2} \right)\] và nhận \[AI\] là trục đối xứng với \[I\] là tâm mặt cầu. Một đường sinh hình nón \[\left( H \right)\] cắt mặt cầu tại \[M,N\]sao cho \[AM = 3AN\]. Viết phương trình mặt cầu đồng tâm với mặt cầu \[\left( S \right)\], tiếp xúc với các đường sinh của hình nón \[\left( H \right).\]
Cho mặt phẳng \[\left( P \right):2x + 2y + z - {m^2} + 4m - 5 = 0\] và mặt cầu có phương trình \[\left( S \right):\]\[{x^2} + {y^2} + {z^2} - 2x + 2y - 2z - 6 = 0\]. Giá trị của \[m\] để \[\left( P \right)\] tiếp xúc với \[\left( S \right)\] là
Có tất cả bao nhiêu giá trị nguyên của \[m\] để phương trình \[{x^2} + {y^2} + {z^2} + 4mx + 2my - 2mz + 9{m^2} - 28 = 0\] là phương trình mặt cầu?
III. Vận dụng
Trong không gian \[Oxyz\], mặt cầu (S) đi qua điểm \[O\] và cắt các tia \[Ox,\]\[Oy,\]\[Oz\] lần lượt tại các điểm \[A,B,C\] khác \[O\] thỏa mãn tam giác \[ABC\] có trọng tâm là điểm \[G\left( { - 6; - 12;18} \right)\]. Tọa độ tâm của mặt cầu (S) là
Trong không gian \[Oxyz\], cho điểm \[I\left( {3;4;2} \right)\]. Phương trình mặt cầu tâm \[I\] tiếp xúc với trục \[Oz\] là
Trong không gian hệ trục \[Oxyz\], cho hai điểm \[A\left( {1;0; - 3} \right)\] và \[B\left( {3;2;1} \right).\] Phương trình mặt cầu đường kính \[AB\] là
Trong không gian với hệ trục tọa độ \[Oxyz\], phương trình nào sau đây là phương trình mặt cầu
Cho điểm \[M\] nằm ngoài mặt cầu \[S\left( {O;R} \right)\]. Khẳng định nào sau đây là đúng?
Trong các phương trình sau, phương trình nào là phương trình mặt cầu?
Trong không gian \[Oxyz\], cho ba điểm \[A\left( {1;0;0} \right),B\left( {0;0;3} \right),C\left( {0;2;0} \right)\]. Tập hợp các điểm \[M\] thỏa mãn \[M{A^2} = M{B^2} + M{C^2}\] là mặt cầu có bán kính bao nhiêu?
Trong không gian với hệ trục tọa độ \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\]\[{\left( {x - 1} \right)^2} + {y^2} + {\left( {z + 3} \right)^2} = 16\] có tâm là
Trong không gian \[Oxyz\], cho mặt cầu \[{x^2} + {y^2} + z{}^2 - 4x + 1 = 0\] có tâm và bán kính là
Trong không gian với hệ trục tọa độ \[Oxyz\], cho mặt cầu có phương trình \[\left( S \right):\] \[{x^2} + {y^2} + {z^2} - 2x + 10y + 3z + 1 = 0\] đi qua điểm có tọa độ nào sau đây