Thứ năm, 09/01/2025
IMG-LOGO

Câu hỏi:

18/11/2024 12

III. Vận dụng

Một chiếc hộp có 80 viên bi, trong đó 50 viên màu đỏ, 30 viên màu vàng ; các viên có kích thước và khối lượng như nhau. Sau khi kiểm tra, người ta thấy có 60% số viên bi màu đỏ đánh số và 50% viên bi màu vàng đánh số, những viên bi còn lại không đánh số. Khi đó:

a) Số viên bi màu đỏ có đánh số là 30.

b) Số viên bi màu vàng không đánh số là 15.

c) Lấy ra ngẫu nhiên một viên vi trong hộp. Xác suất để viên bi được lấy ra có đánh số là \(\frac{3}{5}.\)

d) Lấy ra ngẫu nhiên một viên bi trong hộp. Xác suất để viên bi được lấy ra không có đánh số là \(\frac{7}{{16}}.\)

Số mệnh đề đúng trong các mệnh đề trên là:

A. 1.

B. 2.

C. 3.

Đáp án chính xác

D. 4.

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng là: C

a) Theo đề, ta có số viên bi màu đỏ có đánh số là 60%.50 = 30.

Vậy ý a đúng.

b) Số viên bi màu vàng không đánh số là 30.(1 – 50%) = 15.

Vậy ý b đúng.

c) Gọi A là biến cố: “Viên bi được lấy ra có đánh số”,

B là biến cố: “Viên bi được lấy ra có màu đỏ”,

\(\overline B \) là biến cố: “Viên bi được lấy ra có màu vàng”.

Lúc này ta tính P(A) theo công thức: P(A) = P(B).P(A | B) + P(\(\overline B \)).P(A | \(\overline B \)).

Theo đề bài, ta có: P(B) = \(\frac{{50}}{{80}} = \frac{5}{8}\); P(\(\overline B \)) = \(\frac{{30}}{{80}} = \frac{3}{8}\); P(A | B) = 60% = \(\frac{3}{5}\);

P(A | \(\overline B \)) = 100% − 50% = 50% = \(\frac{1}{2}.\)

Vậy P(A) = P(B).P(A | B) + P(\(\overline B \)).P(A | \(\overline B \)) = \(\frac{5}{8}.\frac{3}{5} + \frac{3}{8}.\frac{1}{2} = \frac{9}{{16}}.\)

Vậy ý c sai.

d) Có A là biến cố “Viên bi được lấy ra có đánh số”

Suy ra \(\overline A \) là biến cố “Viên bi được lấy ra không có đánh số”.

Ta có: P(\(\overline A \)) = 1 – P(A) = 1 – \(\frac{9}{{16}}\) = \(\frac{7}{{16}}.\)

Vậy ý d đúng.

Vậy có 3 ý đúng.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một công ty du lịch bố trí chỗ cho đoàn khách tại ba khách sạn A, B, C theo tỉ lệ 20%, 50%, 30%. Tỉ lệ hỏng điều hòa ở khách sạn lần lượt là 5%, 4% và 8%. Tính xác suất để một khách nghỉ ở phòng điều hòa bị hỏng.

Xem đáp án » 18/11/2024 19

Câu 2:

Một trạm chỉ phát hai tín hiệu A và B với xác suất tương ứng là 0,85 và 0,15. Do có nhiễu trên đường truyền nên \(\frac{1}{7}\) tín hiệu A bị méo và thu được tín hiệu B còn \(\frac{1}{8}\) tín hiệu B bị méo và thu được tín hiệu A. Giả sử đã thu được tín hiệu A, tính xác suất thu được đúng tín hiệu lúc phát.

Xem đáp án » 18/11/2024 15

Câu 3:

Cho \(A,B\) là các biến cố của một phép thử \(T\). Biết rằng \(P\left( A \right) > 0\) và \(0 < P\left( B \right) < 1.\) Xác suất của biến cố B với điều kiện biến cố A đã xảy ra được tính theo công thức nào?

Xem đáp án » 18/11/2024 12

Câu 4:

Giả sử trong một trường học, có 80% học sinh đã học bài kiểm tra toán và 20% học sinh chưa học bài. Trong số những học sinh đã học bài, 90% đạt điểm cao (trên 8), còn trong số những học sinh chưa học bài, chỉ có 20% học sinh đạt điểm cao. Nếu chọn ngẫu nhiên một học sinh đạt điểm cao trong bài kiểm tra, xác suất để học sinh đó thuộc bài là bao nhiêu?

Xem đáp án » 18/11/2024 12

Câu 5:

Trong một trường học X, tỉ lệ học sinh nữ là 53%. Tỉ lệ học sinh nữ và tỉ lệ học sinh nam tham gia câu lạc bộ nghệ thuật lần lượt là 21% và 17%. Chọn ngẫu nhiên 1 học sinh của trường. Tính xác suất học sinh đó tham gia câu lạc bộ nghệ thuật.

Xem đáp án » 18/11/2024 12

Câu 6:

Có hai lô sản phẩm. Lô I có 20 sản phẩm, trong đó có 15 sản phẩm tốt và 5 sản phẩm lỗi. Lô II có 20 sản phẩm, trong đó có 10 sản phẩm tốt và 10 sản phẩm lỗi. Lấy ngẫu nhiên 1 lô và từ lô nãy lấy ngẫu nhiên ra 1 sản phẩm. Khi đó:

a) Xác suất để sản phẩm lấy ra là sản phẩm tốt bằng \(\frac{5}{8}.\)

b) Xác suất để sản phẩm lấy ra là sản phẩm lỗi bằng \(\frac{3}{8}.\)

c) Giả sử sản phẩm lấy ra là sản phẩm tốt. Xác suất để sản phẩm đó có lô thứ II là \(\frac{2}{5}.\)

d) Giả sử sản phẩm lấy ra là phế phẩm. Xác suất để sản phẩm đó có lô thứ nhất là \(\frac{1}{2}.\)

Số mệnh đề đúng trong các mệnh đề trên là

Xem đáp án » 18/11/2024 12

Câu 7:

I. Nhận biết

Cho \(A,B\) là các biến cố của một phép thử \(T\). Biết rằng \(0 < P\left( B \right) < 1\), xác suất của biến cố A được tính theo công thức nào sau đây?

Xem đáp án » 18/11/2024 11

Câu 8:

Cho hai biến cố \(A,B\) với \(P\left( B \right) = 0,3;{\rm{ }}P\left( A \right) = 0,4\) và \(P\left( {A|B} \right) = 0,25.\) Khi đó, \(P\left( {B|A} \right)\) bằng

Xem đáp án » 18/11/2024 11

Câu 9:

Một cửa hàng có ba loại trái cây: táo, chuối và cam với tỉ lệ là 50% lượng hoa quả trong cửa hàng là táo, 30% là chuối và 20% là cam. Xác suất bị hỏng khi để qua ngày mai của táo là 5%, chuối là 10% và cam là 2%. Lấy ngẫu nhiên một quả trong cửa hàng. Tính xác suất quả đó bị hỏng.

Xem đáp án » 18/11/2024 11

Câu 10:

Một cuộc thi khoa học có 36 bộ câu hỏi, trong đó có 20 câu hỏi về chủ đề tự nhiên và 16 câu hỏi về chủ đề xã hội. Bạn An lấy ngẫu nhiên một bộ câu hỏi (lấy không hoàn lại), sau đỏ bạn Bình lấy ngẫu nhiên một câu hỏi. Xác suất bạn Bình lấy được bộ câu hỏi về chủ đề xã hội bằng

Xem đáp án » 18/11/2024 11

Câu 11:

Một trường có tỉ lệ học sinh nữ là 52%. Tỉ lệ học sinh nữ và tỉ lệ học sinh tham gia câu lạc bộ nghệ thuật lần lượt là 18% và 15%. Gặp ngẫu nhiên một học sinh của trường. Biết rằng học sinh có tham gia câu lạc bộ nghệ thuật. Tính xác suất để học sinh đó là nam.

Xem đáp án » 18/11/2024 11

Câu 12:

Cho hai biến cố \(A,B\) với \(P\left( B \right) = 0,6;{\rm{ }}P\left( {A|B} \right) = 0,7\) và \(P\left( {A|\overline B } \right) = 0,4.\) Khi đó, \(P\left( A \right)\) bằng

Xem đáp án » 18/11/2024 10

Câu 13:

Cho \(A,B\) là các biến cố của một phép thử \(T\). Biết rằng \(0 < P\left( B \right)\), xác suất để biến cố A với điều kiện biến cố B đã xảy ra được tính theo công thức nào dưới đây?

</>

Xem đáp án » 18/11/2024 9

Câu 14:

II. Thông hiểu

Cho hai biến cố \(A,B\) với \(P\left( B \right) = 0,8;{\rm{ }}P\left( {A|B} \right) = 0,7\) và \(P\left( {A|\overline B } \right) = 0,45.\) Tính \(P\left( A \right)\).

Xem đáp án » 18/11/2024 9

Câu 15:

Một trường liên cấp có 3 khối gồm khối tiểu học, khối THCS và khối THPT. Tỉ lệ học sinh mỗi khối như sau: Khối tiểu học chiếm 25%, khối THCS chiếm 45%, khối THPT chiếm 30%. Xác suất học sinh tham gia ngoại khóa ở các khối tương ứng 30% khối tiểu học, 50% khối THCS, 40% khối THPT. Chọn ngẫu nhiên một học sinh trong trường. tính xác suất để học sinh được chọn tham gia hoạt động ngoại khóa.

Xem đáp án » 18/11/2024 9

Câu hỏi mới nhất

Xem thêm »
Xem thêm »