Tập hợp tất cả các giá trị thực của tham số \(m\) để bất phương trình \({\log _4}\left( {{x^2} - x - m} \right) \ge {\log _2}(x - 2)\) có nghiệm với mọi giá trị \(x\) thuộc tập xác định là
Điều kiện: \(\left\{ {\begin{array}{*{20}{l}}{{x^2} - x - m > 0}\\{x - 2 > 0}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{{x^2} - x - m > 0}\\{x > 2}\end{array}} \right.} \right.\)
Với điều kiện trên bất phương trình đã cho tương đương với
\({\log _4}\left( {{x^2} - x - m} \right) \ge {\log _2}(x - 2) \Leftrightarrow {\log _2}\left( {{x^2} - x - m} \right) \ge {\log _2}{(x - 2)^2}\)
\( \Leftrightarrow {x^2} - x - m \ge {x^2} - 4x + 4 \Leftrightarrow m \le 3x - 4(**).\)
Khi đó, \({x^2} - x - m > 0 \Leftrightarrow {x^2} - x - m \ge {x^2} - x - 3x + 4 = {x^2} - 4x + 4 = {(x - 2)^2} > 0\) (vì \(x > 2\) ).
Vậy bất phương trình đã cho có nghiệm với mọi giá trị \(x\) thuộc tập xác định khi \((**)\) có nghiệm với mọi giá trị \(x\) thuộc tập xác định \( \Leftrightarrow m \le {\min _{(2; + \infty )}}(3x - 4) \Rightarrow m \le 2\).
Phương án nào sau đây KHÔNG phải là một trong những đặc điểm của mô hình CodeGym?
Phương án nào sau đây KHÔNG phải là một trong những nhược điểm của giáo dục truyền thống được TS Trần Thị Thu Hương nêu ra?
Từ đoạn 4, ta có thể rút ra kết luận gì về vai trò của các nền tảng giảng dạy số hóa trong tương lai?
Điền từ/cụm từ vào chỗ trống sau đây:
“Bệnh bò điên (BSE) ảnh hưởng trực tiếp và nghiêm trọng nhất tới hệ (1) ________”.
Định luật Avogadro dựa trên căn bản Hóa học nói lên sự liên hệ giữa khối lượng phân tử và tỉ trọng của
Theo tác giả Trần Thị Thu Hương, việc đánh giá kết quả học tập được tiến hành như thế nào trên các nền tảng giảng dạy số hóa?
Theo đoạn [1], [2], PGS.TS Nguyễn Hữu Trung mong muốn đạt được điều gì khi nghiên cứu GNSS?
Theo PGS Nguyễn Hữu Trung, sản phẩm máy thu GNSS sẽ được ưu tiên ứng dụng trong lĩnh vực:
Thông qua tham luận của mình, TS Nguyễn Thành Nam mong muốn các thầy cô giáo sử dụng thiết bị công nghệ thông tin để làm gì?