Nếu biến ngẫu nhiên gốc tuân theo phân phối chuẩn thì tuân theo phân phối?
A. T∼N(0,1)
B. T∼T(n−1)
C. T∼T(n)
D. T∼N(μ,σ2)
Chọn đáp án B
Cho X là biến ngẫu nhiên tuân theo phân phối đều rời rạc với n = 5. X∈{1,2,...,5}X∈{1,2,...,5}. Phương sai VX = ?
Cho X là biến ngẫu nhiên tuân theo luật phân phối đều liên tục X∼U([a;b]). Giá trị P(X∈[a−1;b+1]) bằng:
C.
D.
Trong một ban chấp hành đoàn gồm 7 người, cần chọn 3 người trong ban thường vụ. Nếu không có sự phân biệt về chức vụ của 3 người trong ban thường vụ thì có bao nhiêu các chọn?
Một cuộc thi có 15 người tham dự, giả thiết rằng không có hai người nào có điểm bằng nhau. Nếu kết quả cuộc thi và việc chọn ra 4 người có điểm cao nhất thì có bao nhiêu kết quả có thể xảy ra?
Một hộp đựng 5 viên bi màu xanh, 7 viên bi màu vàng. Có bao nhiêu cách lấy ra 6 viên bi bất kỳ?
Biến ngẫu nhiên X tuân theo luật phân phối nhị thức: X∼B(n,p).P(X=x), với 0≤x≤n, bằng:
Có 15 đội bóng đá thi đấu theo thể thức vòng tròn tính điểm. Hỏi cần phải tổ chức bao nhiêu trận đấu?
Có bao nhiêu cách cắm 3 bông hoa giống nhau vào 5 lọ khác nhau (mỗi lọ cắm không quá một bông)?
Cho 10 điểm, không có 3 điểm nào thẳng hàng. Hỏi có bao nhiêu đường thẳng khác nhau tạo bởi 2 trong 10 điểm nói trên?
Trong mặt phẳng, cho 6 điểm phân biệt sao cho không có ba điểm nào thẳng hàng. Hỏi có thể lập được bao nhiêu tam giác mà các đỉnh của nó thuộc tập điểm đã cho?
Cho mặt phẳng chứa đa giác đều (H) có 20 cạnh. Xét tam giác có 3 đỉnh được lấy từ các đỉnh của (H). Hỏi có bao nhiêu tam giác có đúng 1 cạnh là cạnh của (H).