Tìm các số thực b,c để phương trình z2 + bz + c = 0 nhận z = 1+ i làm một nghiệm.
A. b = -2; c = 3
B. b = -1; c = 2
C. b = -2; c = 2
D. b = 2; c = 2
Chọn C.
Theo giả thiết phương trình nhận z = 1+ i làm một nghiệm của phương trình: z2 + bz + c = 0.
Nên ( 1 + i) 2 + b(1 + i) + c = 0
Hay b + c + ( 2 + b) i = 0
Do đó: b + c = 0 và 2 + b = 0
Ta tìm được : b = -2 và c = 2.
Gọi z1; z2 là hai nghiệm phức của phương trình z2 - 4z + 9 = 0; gọi M và N lần lượt là các điểm biểu diễn z1; z2 trên mặt phẳng phức. Tính độ dài đoạn thẳng MN.
Tìm số nguyên x, y sao cho số phức z = x + yi thỏa mãn z3 = 18 + 26i
Tìm số thực x; y để hai số phức z1 = 9y2 – 4 – 10xi5 và z2 = 8y2 + 20i11 là liên hợp của nhau?
Trong C, phương trình (z2 + i) (z2 – 2iz – 1) = 0 có nghiệm là:
Gọi z là căn bậc hai có phần ảo âm của 33 - 56i. Phần thực của z là:
Cho số phức z thỏa . Viết z dưới dạng z = a + bi. Khi đó tổng a + b có giá trị bằng bao nhiêu?