Cho hình lăng trụ đứng tam giác ABC. A’B’C’, có cạnh bên AA’ = 21 cm, tam giác ABC vuông cân tại A, BC = 42 cm. Tính khoảng cách từ A đến mặt phẳng (A’BC).
A.
B.
C.
D.
Chọn B.
- Tam giác ABC vuông cân tại A, BC = 42cm
- Tứ diện A.A’BC là tứ diện vuông tại A. Gọi h = d( A, (A’BC)), ta có:
Cho dãy số xác định bởi và . Số hạng tổng quát của dãy số này là:
Cho tứ diện ABCD có các cạnh AB, BC, BD vuông góc với nhau từng đôi một. Khẳng định nào sau đây đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh a, SA ⊥ (ABCD), SA = x. Tìm x để hai mặt phẳng (SBC) và (SCD) tạo với nhau một góc .
Cho cấp số cộng (un) có số hạng đầu là u1 = 1 và công sai d = 1. Tìm n sao cho tổng của n số hạng đầu tiên của cấp số cộng đó bằng 3003.
Cho tứ diện ABCD, biết hai tam giác ABC và BCD là hai tam giác cân có chung cạnh đáy BC. Gọi I là trung điểm của cạnh BC. Khẳng định nào đúng trong các khẳng định sau?
Một cấp số cộng gồm 8 số hạng với số hạng đầu bằng - 15 và số hạng cuối là 69. Tìm công sai của cấp số cộng.
Cho lăng trụ tứ giác đều ABCD.A’B’C’D’ có cạnh đáy bằng a. Gọi M, N, P là trung điểm của các cạnh AD, DC, A’D’. Tính khoảng cách giữa CC’ và mặt phẳng (MNP)?
Cho hàm số f(x)liên tục trên đoạn [a ; b] và f(a) = b, f(b) = a, với 0 < a < b. Khi đó phương trình nào trong các phương trình sau đây luôn có nghiệm trên khoảng (a, b).
Các giá trị của x để là ba số hạng liên tiếp của một cấp số cộng.