Cho 4 điểm không cùng thuộc một mặt phẳng. Trong các phát biểu sau đây, phát biểu nào là sai?
A. Trong 4 điểm đã cho không có ba điểm nào thẳng hàng
B. Trong 4 điểm đã cho luôn luôn tồn tại 3 điểm thẳng hàng
C. Số mặt phẳng đi qua 3 trong 4 điểm đã cho là 4
D. Số đoạn thẳng nối hai điểm trong 4 điểm đã cho là 6.
+ Phương án A đúng vì nếu có ba điểm thẳng hàng ( giả sử là A; B; C) thì bốn điểm đã cho luôn thuộc mặt phẳng chứa điểm D còn lại và đường thẳng AB. (mâu thuẫn giả thiết)
+ Phương án C đúng . Số mặt phẳng đi qua 3 trong 4 điểm đã cho là:
+ Phương án D đúng. Số đoạn thẳng nối 2 điểm trong 4 điểm đã cho là:
Đáp án B
Cho hình chóp S.ABCD, đáy là hình bình hành ABCD, các điểm M, N lần lượt thuộc các cạnh AB, SC. Phát biểu nào sau đây là đúng?
Cho hình chóp S.ABCD, đáy là hình thang ABCD, AD // BC và AD > BC, A’ là trung điểm của SA, B’ thuộc cạnh SB và không phải là trung điểm của SB. Phát biểu nào sau đây là đúng?
Hình vẽ như sau:
Cho hình chóp S.ABCD, O là giao điểm của AC và BD, phát biểu nào sau đây là đúng?
Cho hình chóp S.ABCD, M là điểm nằm trong tam giác SAD. Phát biểu nào sau đây là đúng?
Cho hình chóp O.ABC, A’ là trung điểm của OA; các điểm B’, C’ tương ứng thuộc các cạnh OB, OC và không phải là trung điểm của các cạnh này. Phát biểu nào sau đây là đúng.
Một mặt phẳng hoàn toàn được xác định nếu biết điều nào sau đây?