Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD.
Hai mặt phẳng (SAB) và (SBC) vuông góc vì.
A. Góc của (SAB) và (SBC) là góc ABC và bằng .
B. Góc của (SAB) và (SBC) là góc BAD và bằng .
C. AB ⊥ BC; AB ⊂ (SAB) và BC ⊂ (SBC)
D. BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA
Phương án A sai vì AB và CB không vuông góc với giao tuyến SB của (SAB) và (SBC), nên góc ABC không phải là góc của hai mặt phẳng này.
Phương án B sai vì góc BAD không phải là góc của hai mặt phẳng (SAB) với mặt phẳng (SBC)
Phương án C sai vì AB ⊥ BC thì chưa đủ để kết luận AB vuông góc với mặt phẳng (SBC)
Phương án D đúng vì : BC ⊥ (SAB) do BC ⊥ AB và BC ⊥ SA ⇒ (SBC) ⊥ (SAB)
Đáp án D
Cho chóp tứ giác đều S.ABCD có tất cả các cạnh bằng a.
Đường thẳng SA vuông góc với
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc.
Khằng định nào sau đây đúng?
Cho hình chóp S.ABCD có ABCD là hình chữ nhật. SA vuông góc với (ABCD), AH và AK lần lượt là đường cao của tam giác SAB và SAD.
Hai mặt phẳng (SAC) và (AHK) vuông góc vì:
Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng a và góc giữa cạnh bên với mặt phẳng đáy bằng ∝
Tan của góc giữa mặt bên và mặt đáy bằng:
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a và SA = SB = SC = a.
Mặt phẳng (ABCD) vuông góc với mặt phẳng:
Cho tứ diện ABCD có: AB = AC = AD, góc BAC bằng góc BAD bằng . Gọi M và N lần lượt là trung điểm của AB và CD.
Góc giữa hai mặt phẳng (ACD) và (BCD) là:
Cho hai hình vuông ABCD và ABEF cạnh a nằm trên hai mặt phẳng vuông góc.
DE bằng:
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc. Điểm cách đều bốn điểm A, B, C, D là:
Cho hình chóp S.ABCD có đáy ABCD là vuông cạnh a và SA = SB = SC = SD = a.
Góc giữa mặt bên ( SBC) và mặt phẳng đáy có tang bằng:
Cho hình lập phương ABCD.A’B’C’D’:
Mặt phẳng (ACC’A’) Không vuông góc với.
Cho hình tứ diện ABCD có AB, BC, CD đôi một vuông góc.
Mặt phẳng (ABD) vuông góc với mặt phẳng nào của tứ diện?
Cho tứ diện ABCD có: AB = AC = AD, góc BAC bằng góc BAD bằng . Gọi M và N lần lượt là trung điểm của AB và CD.
Mặt phẳng (BCD) vuông góc với mặt phẳng
Cho hình lập phương ABCD.A’B’C’D’: Hình chiếu vuông góc của A lên mặt phẳng (A’BD) là: