Cho a là một số thực dương khác 1 và các mệnh đề sau:
Hàm số y=lnx là hàm nghịch biến trên
Trên khoảng (1;3) hàm số nghịch biến
Nếu M>N>0 thì
Nếu
Hỏi có bao nhiêu mệnh đề đúng?
A. 1
B. 2
C. 3
D. 4
Vì cơ số đồng biến trên . Do đó 1) sai.
Hàm số có cơ số nên nghịch biến trên R, suy ra nghịch biến trên khoảng (1;3). Do đó 2) đúng.
Nếu cơ số nghịch biến. Vì vậy với M>N>0 thì . Do đó 3) sai.
Ta có . Do đó 4) đúng
Vậy có 2) và 4) đúng.
Đáp án cần chọn là: B
Cho hai hàm số với lần lượt có đồ thị là như hình bên. Mệnh đề nào đúng?
Cho hai hàm số và . Xét các mệnh đề sau:
Đồ thị của hai hàm số f (x) và g (x) luôn cắt nhau tại một điểm.
Hàm số f(x)+g(x) đồng biến khi a > 1, nghịch biến khi 0<a<1
Đồ thị hàm số f (x) nhận trục Oy làm tiệm cận.
Chỉ có đồ thị hàm số f (x) có tiệm cận.
Hỏi có tất cả bao nhiêu mệnh đề đúng?
Cho hai hàm số và . Tổng tất cả các giá trị nguyên của tham số m để hai đồ thị hàm số cắt nhau tại một điểm duy nhất bằng: