Trong không gian cho hai tia Ax, By chéo nhau sao cho AB vuông góc với cả hai tia đó. Các điểm M, N lần lượt thay đổi trên Ax, By sao cho độ dài đoạn MN luôn bằng giá trị c không đổi (cAB). Gọi là góc giữa Ax, By. Giá trị lớn nhất của AM.BN là:
A.
B.
C.
D.
Cho tứ diện ABCD. Gọi I, J lần lượt là trung điểm của AB và CD, G là trung điểm của IJ. Xác định vị trí của M để nhỏ nhất.
Cho hình hộp ABCD.A’B’C’D’. Xác định vị trí các điểm M, N lần lượt trên AC và DC’ sao cho MN // BD’. Tính tỉ số bằng?
Cho tứ diện ABCD. Lấy các điểm M, N, P, Q lần lượt thuộc AB, BC, CD, AD sao cho . Hãy xác định k để M, N, P, Q đồng phẳng
Giả sử M, N, P là ba điểm lần lượt nằm trên ba cạnh SA, SB, SC của tứ diện S.ABC. Gọi I là giao điểm của ba mặt phẳng (BCM), (CAN), (ABP) và J là giao điểm của ba mặt phẳng (ANP), (BPM), (CMN). Ta được S, I, J thẳng hàng. Tính đẳng thức nào sau đây đúng?
Cho hình hộp ABCD.A’B’C’D’ và các điểm M, N, P xác định bởi . Hãy tính x, y theo k để ba điểm M, N, P thẳng hàng.
Cho hình hộp ABCD.A’B’C’D’. Một đường thẳng cắt các đường thẳng AA’, BC, C’D’ lần lượt tại M, N, P sao cho . Tính .
Cho hình hộp ABCD.. M là điểm trên cạnh AD sao cho . N là điểm trên đường thẳng . P là điểm trên đường thẳng sao cho M, N, P thẳng hàng. Tính
Cho ba vectơ không đồng phẳng. Trong các khẳng định sau, khẳng định nào sai?
Cho tứ diện ABCD. Gọi E, F là các điểm thỏa mãn còn P, Q, R là các điểm xác định bởi . Chứng minh ba điểm P, Q, R thẳng hàng. Khẳng định nào sau đây là đúng?