Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng và điểm I(0;1;1). Phương trình mặt phẳng đối xứng với qua I là:
A.
B.
C.
D.
Trong không gian với hệ tọa độ Oxyz, cho điểm A(-1;3;2) và mặt phẳng (P): 2x – 5y + 4z – 36 = 0. Tọa độ hình chiếu H của A trên (P) là:
Cho tam giác ABC có A(3;0;0), B(0;-6;0), C(0;0;6). Tìm tọa độ điểm H là hình chiếu vuông góc của trọng tâm tam giác ABC trên mặt phẳng x + y + z – 4 = 0
Trong không gian với hệ tọa độ Oxyz, cho hai điểm A(3;3;1), B(0;2;1) và mặt phẳng (P): x + y + z – 7 = 0. Đường thẳng d nằm trong (P) sao cho mọi điểm của d cách đều hai điểm A, B có phương trình là:
Trong không gian Oxyz, gọi d là đường thẳng đi qua điểm M(2;1;1), cắt và vuông góc với đường thẳng . Tìm tọa độ giao điểm của d và mặt phẳng (Oyz)
Trong không gian Oxyz, cho mặt phẳng (P): 4y – z + 3 = 0 và hai đường thẳng . Đường thẳng d vuông góc với mặt phẳng (P) và cắt cả hai đường thẳng có phương trình là:
Trong không gian tọa độ Oxyz, cho và mặt phẳng (P): x – 3y + z – 4 = 0. Phương trình hình chiếu của d trên (P) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x + 2y = 0. Phương trình nào sau đây là phương trình đường thẳng qua A(-1;3;-4) cắt trục Ox và song song với mặt phẳng (P):
Trong không gian với hệ tọa độ Oxyz, cho điểm A(1;2;3) và 2 đường thẳng , . Phương trình mặt phẳng A và song song với là:
Trong không gian với hệ tọa độ Oxyz, cho điểm A(4;-3;5) và B(2;-5;1). Viết phương trình mặt phẳng (P) đi qua trung điểm I của đoạn thẳng AB và vuông góc với đường thẳng
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có các đỉnh A(1;2;1), B(-2;1;3), C(2;-1;1), D(0;3;1). Phương trình mặt phẳng (P) đi qua hai điểm A, B sao cho C, D cùng phía so với (P) và khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x – y + 3z + 2 = 0 và đường thẳng . Phương trình mặt phẳng (Q) chứa đường thẳng d và vuông góc với (P) là:
Trong không gian Oxyz, mặt phẳng đi qua điểm M(0;-1;2) và song song với hai đường thẳng và có phương trình là:
Trong không gian với hệ tọa độ Oxyz, cho tứ diện ABCD có các đỉnh A(1;2;1), B(-2;1;3), C(2;-1;1), D(0;3;1). Phương trình mặt phẳng (P) đi qua hai điểm A, B sao cho C, D khác phía so với (P) và khoảng cách từ C đến (P) bằng khoảng cách từ D đến (P) là:
Trong không gian với hệ tọa độ Oxyz, cho mặt phẳng (P): x – y – z – 1 = 0 và đường thẳng . Phương trình đường thẳng qua A(1;1;-2) vuông góc với d và song song với (P) là: