Cho hàm số y = f(x) có đồ thị như hình vẽ. Khẳng định nào sau đây là đúng?
A.
B. Hàm số đồng biến trên khoảng
C. Giá trị cực tiểu của hàm số bằng 2
D.
Đáp án D
A sai vì y = 3 là giá trị cực đại của hàm số, không phải giá trị lớn nhất.
B sai vì hàm số đồng biến trên khoảng
C sai vì x = 2 là điểm cực tiểu của hàm số không phải giá trị cực tiểu.
D đúng vì trên đoạn [0;4] thì hàm số đạt GTNN (cũng là giá trị cực tiểu) bằng – 1 đạt được tại x = 2
Cho hàm số có đồ thị (C). Viết phương trình tiếp tuyến của đồ thị (C) có hệ số góc nhỏ nhất
Cho hàm số y = f(x) có bảng biến thiên như sau:
Khẳng định nào sau đây là khẳng định đúng?
Cho hàm số có đồ thị là đường cong như hình vẽ
Tính tổng S = a + b + c + d
Đồ thị hàm số cắt đồ thị hàm số tại hai điểm phân biệt A, B. Tính độ dài AB
Cho hàm số có đồ thị như hình dưới đây
Có tất cả bao nhiêu giá trị nguyên của tham số để phương trình có 6 nghiệm phân biệt
Cho hai đồ thị hàm số và đồ thị hàm số có tất cả bao nhiêu điểm chung?
Viết phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 0
Hệ số góc của tiếp tuyến của đồ thị hàm số tại điểm có hoành độ x = - 1 là:
Cho hàm số y = f(x) xác định, liên tục trên R có BBT:
Bảng biến thiên trên là bảng biến thiên của hàm số nào?
Cho hàm số có đồ thị hàm số như hình vẽ dưới đây. Khẳng định nào sau đây là đúng?
Cho hàm số có đồ thị như hình dưới. Tìm tất cả các giá trị thực của tham số m để phương trình có 3 nghiệm phân biệt