Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Gọi M, N, P, Q lần lượt là các điểm nằm trên các cạnh BC, SC, SD, AD sao cho MN // BS, NP // CD, MQ // CD. Hỏi PQ song song với mặt phẳng nào sau đây?
A.
B.
C.
D.
Cho hình chóp S.ABCD có đáy ABCD là hình thang đáy lớn AB. Gọi M là một điểm trên cạnh CD; (α) là mặt phẳng qua M và song song với SA và BC. Thiết diện của mp(α) với hình chóp là:
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. Một mặt phẳng (P) đồng thời song song với AC và SB lần lượt cắt các đoạn thẳng SA, AB, BC, SC, SD và BD tại M, N, E, F, I, J. Xét các khẳng định sau:
(1) MN // (SCD)
(2) EF // (SAD)
(3) NE // (SAC)
(3) IJ // (SAB)
Có bao nhiêu khẳng định đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi I, J lần lượt là trung điểm của các cạnh AD; BC và G là trọng tâm tam giác SAB. Tìm điều kiện của AB và CD để thiết diện của (IJG) và hình chóp là một hình bình hành.
Cho hình chóp S.ABCD có đáy ABCD là hình bình hành. (α) qua BD và song song với SA cắt SC tại K. Chọn khẳng định đúng?
Cho hình chóp S.ABCD có đáy ABCD là hình thang có cạnh đáy AB và CD. Gọi I, J lần lượt là trung điểm của các cạnh AD và BC và G là trọng tâm tam giác SAB. Tìm giao tuyến của hai mặt phẳng (SAB) và (IJG)
Cho tứ diện ABCD có AB = CD. Mặt phẳng (α) qua trung điểm của AC và song song với AB, CD cắt ABCD theo thiết diện là:
Cho tứ diện ABCD, gọi G là trọng tâm tam giác ACD, M thuộc đoạn thẳng BC sao cho CM = 2MB. Chọn mệnh đề đúng trong các mệnh đề sau?
Cho tứ diện ABCD. Trên cạnh AD lấy trung điểm M, trên cạnh BC lấy điểm N bất kỳ. Gọi (α) là mặt phẳng chứa đường thẳng MN và song song với CD. Xác định vị trí của điểm N trên cạnh BC sao cho thiết diện là hình bình hành.
Cho hình chóp S.ABCD có đáy ABCD là hình vuông tâm O, tam giác SBD cân tại S. Gọi M là điểm tùy ý trên AO. Mặt phẳng (α) đi qua M và song song với SA, BD cắt SO, SB, AB tại N, P, Q. Tứ giác MNPQ là hình gì?
Cho đường thẳng d song song với mặt phẳng (α), nếu mặt phẳng (β) chứa d mà cắt (α) theo giao tuyến d’ thì:
Cho hình chóp S.ABCD. Gọi M, N lần lượt là trọng tâm của tam giác SAB và ABC. Khi đó MN song song với
Cho chóp tứ giác S.ABCD có hai đường chéo AC và BD. Gọi E và F lần lượt là giao điểm của AB và CD, AD và BC. Một mặt phẳng (α) đi qua điểm M trên cạnh SB (M nằm giữa S và B) song song với SE và SF (SE không vuông góc với SF). Thiết diện của hình chóp cắt bởi mp(α) có số cạnh là:
Cho hình chóp S.ABCD. Gọi M, N là hai điểm lần lượt thuộc cạnh AB và CD; (α) là mặt phẳng đi qua MN và song song với SA. Tìm điều kiện của MN để thiết diện của hình chóp khi cắt bởi mp (α) là một hình thang.