Cho hàm số . Giả sử đồ thị hàm số có hai điểm cực trị là A, B đồng thời A, B cùng với gốc tọa đọ O không thẳng hàng. Khi đó chu vi nhỏ nhất bằng bao nhiêu ?
A.
B. .
C. .
D. .
Chọn B
[Phương pháp tự luận]
Ta có
là hai điểm cực trị của đồ thị hàm số
Chu vi của là:
(Sử dụng tính chất ) với
Từ đó ta có:
Dấu bằng xảy ra khi và chỉ khi cùng hướng
Vậy chu vi nhỏ nhất bằng khi
Cho hàm số . Tìm tất cả các giá trị của tham số thực m để hàm số có cực đại mà không có cực tiểu
Tìm các giá trị của tham số m để đồ thị hàm số: có ba điểm cực trị . Đồng thời ba điểm cực trị đó là ba đỉnh của một tam giác có diện tích bằng 64
Tìm các giá trị của tham số m để đồ thị hàm số: có ba điểm cực trị . Đồng thời ba điểm cực trị đó là ba đỉnh của một tam giác có bán kính đường tròn nội tiếp lớn hơn 1
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có 3 điểm cực trị tạo thành 3 đỉnh của một tam giác đều
Cho hàm số . Tìm tất cả các giá trị thực của m để hàm số có 2 cực trị cùng dấu
Cho hàm số . Tìm tất cả các giá trị của tham số thực m để hàm số có cực đại, cực tiểu và các điểm cực trị của đồ thị hàm số lập thành tam giác có diện tích lớn nhất
Cho hàm số . Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số (C) có ba điểm cực trị A, B, C sao cho OA = BC; trong đó O là gốc tọa độ, A là điểm cực trị thuộc trục tung, B và C là hai điểm cực trị còn lại
Tìm các giá trị của tham số m để đồ thị hàm số: có ba điểm cực trị . Đồng thời ba điểm cực trị đó là ba đỉnh của một tam giác có bán kính đường tròn ngoại tiếp bằng 1
Tìm các giá trị của tham số m để đồ thị hàm số: có ba điểm cực trị. Đồng thời ba điểm cực trị đó cùng với điểm nội tiếp được một đường tròn
Tìm các giá trị của tham số m để đồ thị hàm số: có đường thẳng đi qua điểm cực đại và điểm cực tiểu vuông góc với đường thẳng có phương trình :
Tìm các giá trị của tham số m để đồ thị hàm số: có điểm cực đại và điểm cực tiểu cùng với gốc tọa độ tạo thành tam giác vuông tại O.
Tính theo m khoảng cách giữa điểm cực đại và điểm cực tiểu ( nếu có) của đồ thị hàm số:
Tìm các giá trị của tham số m để đồ thị hàm số: có điểm cực đại và điểm cực tiểu nằm trên đường thẳng có phương trình:
Tìm tất cả các giá trị thực của tham số m để đồ thị hàm số có ba điểm cực trị là ba đỉnh của một tam giác vuông cân
Tìm tất cả các giá trị thực của tham số m để điểm tạo với hai điểm cực đại, cực tiểu của đồ thị hàm số một tam giác có diện tích nhỏ nhất