A. \[\frac{2}{7}.\frac{{14}}{6} = \frac{2}{3}\]
B. \[25.\frac{{ - 4}}{{15}} = \frac{{ - 20}}{3}\]
C. \[{\left( {\frac{2}{{ - 3}}} \right)^2}.\frac{9}{4} = 1\]
D. \[\frac{{ - 16}}{{25}}.\left( {\frac{{25}}{{ - 24}}} \right) = - \frac{2}{3}\]
Đáp án A: \[\frac{2}{7}.\frac{{14}}{6} = \frac{{2.14}}{{7.6}} = \frac{{28}}{{42}} = \frac{2}{3}\] nên A đúng.
Đáp án B: \[25.\frac{{ - 4}}{{15}} = \frac{{25.\left( { - 4} \right)}}{{15}} = \frac{{ - 100}}{{15}} = \frac{{ - 20}}{3}\] nên B đúng.
Đáp án C: \[{\left( {\frac{2}{{ - 3}}} \right)^2}.\frac{9}{4} = \frac{{{2^2}}}{{{{\left( { - 3} \right)}^2}}}.\frac{9}{4} = \frac{4}{9}.\frac{9}{4} = 1\] nên C đúng.
Đáp án D: \[\frac{{ - 16}}{{25}}.\left( {\frac{{25}}{{ - 24}}} \right) = \frac{{ - 16}}{{25}}.\frac{{25}}{{ - 24}} = \frac{{ - 2}}{{ - 3}} = \frac{2}{3} \ne - \frac{2}{3}\] nên D sai.
Đáp án cần chọn là: D
\[\left( {\frac{{20}}{7}.\frac{{ - 4}}{{ - 5}}} \right) + \left( {\frac{{20}}{7}.\frac{3}{{ - 5}}} \right)\]