Chọn câu đúng
A. \[\frac{{31}}{2}.\frac{{32}}{2}.\frac{{33}}{2}....\frac{{60}}{2} = 1.2.3.4.5.6.7...60\]
B. \[\frac{{31}}{2}.\frac{{32}}{2}.\frac{{33}}{2}....\frac{{60}}{2} = 1.3.5.7...59\]
C. \[\frac{{31}}{2}.\frac{{32}}{2}.\frac{{33}}{2}....\frac{{60}}{2} = 1.3.5.7...60\]
D. \[\frac{{31}}{2}.\frac{{32}}{2}.\frac{{33}}{2}....\frac{{60}}{2} = 2.4.6.8...60\]
Ta có \[\frac{{31}}{2}.\frac{{32}}{2}.\frac{{33}}{2}....\frac{{60}}{2} = \frac{{31.32.33...60}}{{2.2.2....2}} = \frac{{\left( {31.32.33...60} \right)\left( {1.2.3...30} \right)}}{{{2^{30}}\left( {1.2.3...30} \right)}}\]
\[ = \frac{{1.2.3.4.5...60}}{{\left( {1.2} \right).\left( {2.2} \right).\left( {3.2} \right).\left( {4.2} \right)...\left( {30.2} \right)}} = \frac{{\left( {2.4.6...60} \right)\left( {1.3.5.7...59} \right)}}{{2.4.6...60}} = 1.3.5...59\]
Đáp án cần chọn là: B
Sắp xếp các phân số sau: \[\frac{1}{3};\frac{1}{2};\frac{3}{8};\frac{6}{7}\] theo thứ tự từ lớn đến bé.
Tính nhanh \[A = \frac{5}{{1.3}} + \frac{5}{{3.5}} + \frac{5}{{5.7}} + ... + \frac{5}{{99.101}}\]
Cho \[A = \frac{{\left( {3\frac{2}{{15}} + \frac{1}{5}} \right):2\frac{1}{2}}}{{\left( {5\frac{3}{7} - 2\frac{1}{4}} \right):4\frac{{43}}{{56}}}}\] và \[B = \frac{{1,2:\left( {1\frac{1}{5}.1\frac{1}{4}} \right)}}{{0,32 + \frac{2}{{25}}}}\] . Chọn đáp án đúng.
Cho phân số \[A = \frac{{n - 5}}{{n + 1}}\,\,\left( {n \in Z;n \ne - 1} \right)\] dụng
Tìm điều kiện của n để A là phân số tối giản.
Cho hai biểu thức \[B = \,\,\left( {\frac{2}{3} - 1\frac{1}{2}} \right):\frac{4}{3} + \frac{1}{2}\] và \[C = \,\frac{9}{{23}}.\frac{5}{8} + \frac{9}{{23}}.\frac{3}{8} - \frac{9}{{23}}\] . Chọn câu đúng
Cho x là giá trị thỏa mãn \[\,\,\,\,\,\frac{6}{7}x - \frac{1}{2} = 1\]
Tìm một phân số ở giữa hai phân số \(\frac{1}{{10}}\) và \(\frac{2}{{10}}\) .
Rút gọn phân số \[\;\frac{{1978.1979 + 1980.21 + 1958}}{{1980.1979 - 1978.1979}}\] ta được kết quả là:
Người ta mở vòi cho nước chảy vào đầy bể cần 3 giờ. Hỏi nếu mở vòi nước đó trong 45 phút thì được bao nhiêu phần của bể?