Cho A, B là hai biến cố xung khắc. Biết . Tính .
A.
B.
C.
D.
Có hai hộp đựng bi. Hộp thứ nhất đựng 7 bi đỏ và 5 bi xanh. Hộp thứ hai đựng 6 bi đỏ và 4 bi xanh. Từ mỗi hộp lấy ngẫu nhiên một bi, tính xác suất để 2 bi được lấy ra có cùng màu.
Một xạ thủ bắn bia. Biết rằng xác suất bắn trúng vòng tròn 10 là 0,2; vòng 9 là 0,25 và vòng 8 là 0,15. Nếu trúng vòng k thì được k điểm. Giả sử xạ thủ đó bắn ba phát súng một cách độc lập. Xạ thủ đạt loại giỏi nếu anh ta đạt ít nhất 28 điểm. Xác suất để xạ thủ này đạt loại giỏi là
Một đoàn tàu có 3 toa chở khách đỗ ở sân ga. Biết rằng mỗi toa có ít nhất 4 chỗ trống. Có 4 vị khách từ sân ga lên tàu, họ không quen biết nhau, mỗi người chọn ngẫu nhiêu 1 toa. Tính xác suất P để 1 trong 3 toa đó có 3 trong 4 vị khách nói trên
Cho 10 điểm phân biệt cùng nằm trên một đường tròn. Số tam giác được tạo thành là
Một hội đồng quản trị của một công ty gồm 12 người, trong đó có 5 nữ. Từ hội đồng quản trị đó người ta bầu ra 1 chủ tịch, 1 phó chủ tịch và 2 ủy viên. Hỏi có bao nhiêu cách bầu sao cho trong 4 người được bầu phải có nữ.
Cho hai đường thẳng song song d1, d2. Trên đường thẳng d1 lấy 10 điểm phân biệt, trên đường thẳng d2 lấy 15 điểm phân biệt. Hỏi có bao nhiêu tam giác tạo thành mà ba đỉnh của nó được chọn từ 25 điểm vừa nói ở trên?
Có 5 người nam và 3 người nữ cùng đến dự tiệc, họ không quen biết nhau, cả 8 người cùng ngồi một cách ngẫu nhiên vào xung quanh một cái bàn tròn có 8 ghế. Gọi P là xác suất không có 2 người nữ nào ngồi cạnh nhau. Mệnh đề nào dưới đây đúng?
Hùng và Hương cùng tham gia kì thi THPTQG 2019, ngoài thi 3 môn bắt buộc là Toán, Văn, Anh thì cả hai đều đăng kí thi thêm 2 trong 3 môn tự chọn là Lý, Hóa, Sinh để xét tuyển vào Đại học. Các môn tự chọn sẽ thi theo hình thức trắc nghiệm, mỗi môn có 6 mã đề thi khác nhau, mã đề thi của các môn khác nhau sẽ khác nhau. Tính xác suất để Hùng và Hương chỉ có chung đúng một môn tự chọn và một mã đề thi.
Công ty X thiết kế bảng điều khiển điện tử để mở hoặc khóa cửa một ngôi nhà. Bảng gồm 5 nút, mỗi nút được ghi một số từ 1 đến 5 và không có hai nút nào được ghi cùng một số. Để mở được cửa cần nhấn liên tiếp ít nhất 3 nút khác nhau sao cho tổng của các số trên các nút đó bằng 10. Một người không biết quy tắc mở cửa trên, đã nhấn ngẫu nhiên liên tiếp ít nhất 3 nút khác nhau trên bảng điều khiển. Xác suất P để người đó mở được cửa ngôi nhà là
Cho các số tự nhiên m, n thỏa mãn đồng thời các điều kiện và Khi đó m+n bằng
Một bữa tiệc bàn tròn của các câu lạc bộ trong trường Đại học Sư Phạm Hà Nội trong đó có 3 thành viên từ câu lạc bộ Máu Sư Phạm, 5 thành viên từ câu lạc bộ Truyền thông và 7 thành viên từ câu lạc bộ Kĩ năng. Hỏi có bao nhiêu cách xếp chỗ ngồi cho các thành viên sao cho những người cùng câu lạc bộ thì ngồi cạnh nhau
Cho hai đường thẳng d1, d2 song song nhau. Trên d1 có 6 điểm tô màu đỏ, trên d2 có 4 điểm tô màu xanh. Chọn ngẫu nhiên 3 điểm bất kì trong các điểm trên. Tính xác suất để 3 điểm được chọn lập thành tam giác có 2 đỉnh tô màu đỏ.
Xếp ngẫu nhiên 6 học sinh nam và 2 học sinh nữ thành một hàng ngang. Xác suất để 2 học sinh nữ không đứng cạnh nhau bằng