Gọi S là tập hợp tất cả các số tự nhiên có 4 chữ số đôi một khác nhau và các chữ số thuộc tập hợp {1, 2, 3, 4, 5, 6, 7}. Chọn ngẫu nhiên một số thuộc S, xác suất để số đó không có hai chữ số liên tiếp nào cùng chẵn bằng
Xét phép thử: “Chọn ngẫu nhiên một số thuộc S”. Ta có:
Biến cố A:“số được chọn không có hai chữ số liên tiếp nào cùng chẵn”. + Trường hợp 1: Số được chọn có 4 chữ số đều là số lẻ, có 4! = 24cách chọn. + Trường hợp 2: Số được chọn có 1 chữ số chẵn và 3 chữ số lẻ Có cách chọn 1 chữ số chẵn và cách chọn 3 chữ số lẻ. Đồng thời có 4! cách sắp xếp 4 số được chọn nên có cách chọn thỏa mãn.
+ Trường hợp 3: Số được chọn có 2 chữ số chẵn và 2 chữ số lẻ. * Chọn 2 số chẵn, 2 số lẻ trong tập hợp {1; 2; 3; 4; 5; 6; 7} có cách
Với mỗi bộ 2 số chẵn và 2 số lẻ được chọn, để hai số chẵn không đứng cạnh nhau thì ta có các trường hợp CLCL, CLLC, LCLC. Với mỗi trường hợp trên ta có 2! cách sắp xếp 2 số lẻ và 2! cách sắp xếp các số chẵn nên có 3.2!.2! số thỏa mãn * Suy ra trường hợp 3 có cách chọn
Một ngân hàng đề thi có 20 hạng mục, mỗi hạng mục có 10 câu hỏi. Đề thi có 20 câu hỏi tương ứng 20 hạng mục sao cho mỗi hạng mục có đúng 1 câu hỏi. Máy tính chọn từ ngân hàng ngẫu nhiên 2 đề thi thỏa mãn tiêu chí trên. Tìm xác suất để 2 đề thi có ít nhất 3 câu hỏi trùng nhau. (Kết quả làm tròn đến hàng phần nghìn.)
Cho một đa giác đều có 18 đỉnh nội tiếp trong một đường tròn tâm O. Gọi X là tập hợp các tam giác có các đỉnh là các đỉnh của đa giác đều trên. Tính xác suất P để chọn được một tam giác từ tập X là tam giác cân nhưng không phải tam giác đều.
Gọi A là tập hợp tất cả các số tự nhiên có 8 chữ số đôi một khác nhau. Chọn ngẫu nhiên một số thuộc A. Xác suất để số tự nhiên được chọn chia hết cho 25 bằng:
Có 6 học sinh gồm 2 học sinh lớp A, 2 học sinh lớp B và 2 học sinh lớp C xếp ngẫu nhiên thành một hàng ngang. Tính xác suất để nhóm bất kì 3 học sinh liền kề nhau trong hàng luôn có mặt học sinh của ba lớp A, B, C
Cho tập hợp A = {1; 2; 3; 4; 5; 6}. Gọi S là tập hợp tất cả các tam giác có độ dài ba cạnh là các phần tử của A. Chọn ngẫu nhiên một phần tử thuộc S. Xác suất để phần tử được chọn là một tam giác cân bằng