Phương trình mặt phẳng đi qua điểm A(1; 2; -1) và vuông góc với hai mặt phẳng có phương trình 2x + y = 0 và x = z + 1
A. x - 2y + z + 4 = 0;
B. x - 2y + z - 4 = 0;
C. x - 2y - 2z + 1 = 0;
Đáp án đúng là: A
Hai mặt phẳng có phương trình 2x + y = 0 và x = z + 1 lần lượt có hai véc-tơ pháp tuyến là
Phương trình mặt phẳng vuông góc với hai mặt phẳng trên nên suy ra véc-tơ pháp tuyến vuông góc với hai véc-tơ pháp tuyến
Ta suy ra được
= (-1; 2; -1) = -(1; -2; 1)
Phương trình mặt phẳng đi qua A(1; 2; -1) nhận (1; -2; 1) làm véc-tơ pháp tuyến là
(x - 1) - 2(y - 2) + (z + 1) = 0
Û x - 2y + z + 4 = 0.
Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm P(1; -1; 2); Q(2; 0; 1) là
Trong không gian Oxyz, phương trình mặt phẳng chứa đường thẳng (d): x - 1 = y - 2 = z + 1 và có khoảng cách đến điểm A(2; 3; -3) lớn nhất có phương trình
Trong hệ tọa độ Oxyz cho M(2; 5; -1) và N(4; 3; 0) độ dài đoạn thẳng MN bằng
Số phức z = 3a + 4bi với a; b là các số thực khác 0. Số phức z-1 có phần ảo là
Biết F(x) là một nguyên hàm xủa hàm số f (x) = ex + 2x thỏa mãn F (1) = e. Khi đó, F (x) bằng
Diện tích S hình phẳng giới hạn bởi các đường thẳng y = x3 + 1; y = 0; x = 0; x = 1 là
Trong không gian Oxyz, phương trình mặt phẳng qua điểm M(3; -1; 1) có véc tơ pháp tuyến là
Trong hệ tọa độ Oxyz điểm M' đối xứng của điểm N(2; 3; -4) qua gốc tọa độ O có tọa độ