Tọa độ hình chiếu vuông góc của điểm M(1; -1; 2) trên mặt phẳng (P): 2x - y + 2z + 12 = 0 là
A.
B.
C.
D.
Đáp án đúng là: B
Véc-tơ pháp tuyến của mặt phẳng (P) là:
Phương trình đường thẳng d đi qua M, vuông góc với mặt phẳng (P) nên nhận làm véc-tơ chỉ phương là
Hình chiếu H của điểm M là giao của đường thẳng d mà mặt phẳng (P) nên H(1 + 2t; -1 - t; 2 + 2t) thuộc mặt phẳng (P)
Þ 2(1 + 2t) - (-1 - t) + 2(2 + 2t) + 12 = 0
Û 9t + 19 = 0
Vậy hình chiếu của M lên mặt phẳng (P) có tọa độ
Trong không gian Oxyz, phương trình đường thẳng đi qua hai điểm P(1; -1; 2); Q(2; 0; 1) là
Trong không gian Oxyz, phương trình mặt phẳng chứa đường thẳng (d): x - 1 = y - 2 = z + 1 và có khoảng cách đến điểm A(2; 3; -3) lớn nhất có phương trình
Trong hệ tọa độ Oxyz cho M(2; 5; -1) và N(4; 3; 0) độ dài đoạn thẳng MN bằng
Số phức z = 3a + 4bi với a; b là các số thực khác 0. Số phức z-1 có phần ảo là
Biết F(x) là một nguyên hàm xủa hàm số f (x) = ex + 2x thỏa mãn F (1) = e. Khi đó, F (x) bằng
Diện tích S hình phẳng giới hạn bởi các đường thẳng y = x3 + 1; y = 0; x = 0; x = 1 là
Trong không gian Oxyz, phương trình mặt phẳng qua điểm M(3; -1; 1) có véc tơ pháp tuyến là
Trong hệ tọa độ Oxyz điểm M' đối xứng của điểm N(2; 3; -4) qua gốc tọa độ O có tọa độ