Trong không gian Oxyz, cho hai điểm A(-1; 2; 0) và B(3; 0; 2). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là
A. x + y + z - 3 = 0;
B. 2x - y + z + 2 = 0;
C. 2x + y + z - 4 = 0;
Đáp án đúng là: D
Gọi I là trung điểm của AB và có tọa độ của I được xác định:
Vậy suy ra I(1; 1; 1)
Lại có:
Mặt phẳng trung trực của đoạn thẳng AB là mặt phẳng đi qua trung điểm I của AB và nhận làm véc-tơ pháp tuyến tức là nhận (2; -1; 1) làm véc-tơ pháp tuyến
(P): 2.(x - 1) - (y - 1) + (z - 1) = 0
Û 2x - 2 - y + 1 + z - 1 = 0
Û 2x - y + z - 2 = 0.
Trong không gian Oxyz, cho hai điểm A(-2; 3; 1) và B(5; 6; 2). Đường thẳng AB cắt mặt phẳng (Oxz) tại điểm M. Tỉ số bằng
Số phức z = a + bi, a, b Î ℝ là nghiệm của phương trình
. Tổng T = a2 + b2 bằngTrong không gian Oxyz, mặt cầu (S): (x + 1)2 + (y - 2)2 + z2 = 9 có bán kính bằng
Gọi z1 và z2 là hai nghiệm phức của phương trình z2 - z + 3 = 0. Khi đó |z1| + | z2| bằng
Gọi z0 là nghiệm phức có phần ảo dương của phương trình z2 - 4z + 13 = 0. Trên mặt phẳng tọa độ, điểm biểu diễn của số phức z0 là
Cho hàm số f (x) xác định và liên tục trên ℝ. Gọi S là diện tích hình phẳng giới hạn bởi các đường y = f (x), y = 0, x = -2 và x = 3 (như hình vẽ). Khẳng định nào dưới đây đúng?
Cho hàm số y = f (x) liên tục trên ℝ và có đồ thị của hàm số f '(x) như hình bên dưới. Khẳng định nào sau đây đúng?
Kí hiệu z1; z2 là hai nghiệm của phương trình z2 + z + 1 = 0. Tính P = z12 + z22+ z1z2.
Trong không gian Oxyz, gọi m, n là hai giá trị thực thỏa mãn giao tuyến của hai mặt phẳng (Pm): mx + 2y + nz + 1 = 0 và (Qm): x - my + nz + 2 = 0 cùng vuông góc với mặt phẳng (a): 4x - y - 6z + 3 = 0. Khi đó ta có