A. -192;
B. -120;
C. -256;
Đáp án đúng là: B
Gọi z = a + bi
Điều kiện |z| - z ¹ 0 Þ b ¹ 0
w có phần thực là nên suy ra
Xét các số phức z1, z2 Î S thỏa mãn |z1 - z2| = 6 nên suy ra
Þ (a1 - a2)2 + (b1 - b2)2 = 36
Ta có:
P = |z1 - 10|2 - |z2 - 10|2
= (a1 - 10)2 + b12 - (a2 - 10)2 - b22
= a12 - a22 - 20(a1 - a2) + b12 - b22
= - 20(a1 - a2)
Þ P ³ - 20|a1 - a2|
Để P đạt GTNN thì đạt GTLN nên suy ra b1 = b2
Vậy GTNN của P là
Trong không gian Oxyz, cho hai điểm A(-2; 3; 1) và B(5; 6; 2). Đường thẳng AB cắt mặt phẳng (Oxz) tại điểm M. Tỉ số bằng
Số phức z = a + bi, a, b Î ℝ là nghiệm của phương trình
. Tổng T = a2 + b2 bằngTrong không gian Oxyz, mặt cầu (S): (x + 1)2 + (y - 2)2 + z2 = 9 có bán kính bằng
Gọi z1 và z2 là hai nghiệm phức của phương trình z2 - z + 3 = 0. Khi đó |z1| + | z2| bằng
Gọi z0 là nghiệm phức có phần ảo dương của phương trình z2 - 4z + 13 = 0. Trên mặt phẳng tọa độ, điểm biểu diễn của số phức z0 là
Trong không gian Oxyz, cho hai điểm A(-1; 2; 0) và B(3; 0; 2). Mặt phẳng trung trực của đoạn thẳng AB có phương trình là
Cho hàm số f (x) xác định và liên tục trên ℝ. Gọi S là diện tích hình phẳng giới hạn bởi các đường y = f (x), y = 0, x = -2 và x = 3 (như hình vẽ). Khẳng định nào dưới đây đúng?
Cho hàm số y = f (x) liên tục trên ℝ và có đồ thị của hàm số f '(x) như hình bên dưới. Khẳng định nào sau đây đúng?
Kí hiệu z1; z2 là hai nghiệm của phương trình z2 + z + 1 = 0. Tính P = z12 + z22+ z1z2.
Trong không gian Oxyz, gọi m, n là hai giá trị thực thỏa mãn giao tuyến của hai mặt phẳng (Pm): mx + 2y + nz + 1 = 0 và (Qm): x - my + nz + 2 = 0 cùng vuông góc với mặt phẳng (a): 4x - y - 6z + 3 = 0. Khi đó ta có