Cho số thực a > 1. Khi đó bằng
A. ln |2a – 1|;
B. ln (2a + 1);
C. 2ln (2a + 1);
Đáp án đúng là: B
= ln |2a + 1| = ln (2a + 1) (với a > 1).
Trong không gian Oxyz, phương trình của mặt phẳng đi qua điểm M(1; 2; 3) và vuông góc với trục Oz là
Trong không gian Oxyz cho hai điểm A(1; -2; 2) và B(-1; 2; -2). Phương trình của mặt cầu có đường kính AB là
Trong không gian Oxyz, mặt cầu (S): x2 + y2 + z2 + 2x - 4z - 11 = 0 có bán kính bằng
Trong không gian Oxyz, phương trình của đường thẳng đi qua điểm M(0; 2; 0) và song song với đường thẳng là
Trong không gian Oxyz, mặt phẳng (P): 2x + y - 3z + 4 = 0 có một vectơ pháp tuyến là
Trong không gian Oxyz, cho hai điểm A(1; 0; -2) và B(5; -4; 4). Trung điểm của đoạn AB có tọa độ là
Trên tập hợp các số phức, xét phương trình z2 - 2mz + 7m - 6 = 0, với m là tham số thực. Có bao nhiêu giá trị nguyên của m để phương trình đó cho có hai nghiệm phân biệt z1; z2 thỏa mãn |z1| = |z2|?
Trong không gian Oxyz, mặt cầu (S): (x + 1)2 + y2 + (z - 2)2 = 4 có bán kính bằng
Trong không gian Oxyz cho mặt phẳng (P): x + y + 2z - 1 = 0. Phương trình của mặt phẳng chứa trục Ox và vuông góc với (P) là
Trong không gian Oxyz cho hai điểm A(1; -1; 0) và B(1; 2; 1). Phương trình của mặt phẳng đi qua điểm A và vuông góc với AB là
Trong không gian Oxyz, phương trình của mặt cầu có tâm O và đi qua điểm M(1; 2; -2) là
Trong không gian Oxyz cho hai đường thẳng · Phương trình của đường thẳng song song với d1, cắt d2 và cắt trục Oz là