Kí hiệu k! = k(k − 1)...2.1, ∀k∈N∗. Với n∈N*, đặt Sn = 1.1! + 2.2! + ... + n.n!
Mệnh đề nào dưới đây là đúng?
A. Sn = 2.n!.
B. Sn = (n + 1)! − 1.
C. Sn = (n + 1)!.
D. Sn = (n + 1)! + 1.
Trả lời:
Cách 1: Kiểm nghiệm từng phương án đúng đối với những giá trị cụ thể của n.
Với n = 1 thì S1 = 1.1! = 1 (Loại ngay được các phương án A, C, D).
Đáp án cần chọn là: B
Cho dãy số (un), biết ,với . Ba số hạng đầu tiên của dãy số đó là lần lượt là những số nào dưới đây?
Cho dãy số (un), biết . Năm số hạng đầu tiên của dãy số đó lần lượt là những số nào dưới đây?
Trong phương pháp quy nạp toán học, ở bước 2, nếu ta giả sử mệnh đề đúng với n = k + 1 thì ta cần chứng minh mệnh đề đúng với:
Cho hai dãy số (xn) với và (yn) với yn = n + sin2(n + 1) . Mệnh đề nào dưới đây là đúng?
Cho dãy số (xn) xác định bởi x1 = 5 và . Số hạng tổng quát của dãy số (xn) là:
Giả sử Q là tập con của tập hợp các số nguyên dương sao cho
a) k ∈ Q
b) n∈Q ⇒ n + 1∈ Q ∀n ≥ k.
Với mọi số nguyên dương n, tổng Sn = 1.2 + 2.3 + 3.4 + ... + n(n + 1) là: