Cho hình chóp S.ABC. Lấy các điểm A', B', C' lần lượt thuộc các tia SA, Sb, SC sao cho , trong đó a, b, c là các số thay đổi. Chứng minh rằng mặt phẳng (A'B'C' đi qua trọng tâm của tam giác ABC khi và chỉ khi .
Từ giả thiết ta suy ra
Gọi G là trọng tâm của tam giác . Ta có
với
với
(do không đồng phẳng)
+) Nếu ta có (với ).
Do đó
+) Nếu , ta đặt thì
và
Do đó
Cho tứ diện ABCD. Gọi M, N lần lượt là trung điểm của AB và CD. Chứng minh rằng
Cho hình hộp ABCD.A'B'C'D'. Sử dụng các đỉnh của hình hộp làm điểm đầu và điểm cuối của vectơ.
a) Hãy kể tên các vectơ bằng nhau lần lượt bằng các vectơ
Trong không gian cho ba vectơ . Cho các khẳng định sau.
(1) Nếu các vectơ đồng phẳng thì các vectơ thuộc một mặt phẳng nào đó.
(2) Nếu các vectơ đồng phẳng thì ba vectơ cùng phương.
(3) Nếu tồn tại hai số thực m, n sao cho thì các vectơ đồng phẳng.
(4) Nếu các vectơ đồng phẳng thì giá của chúng song song với mặt phẳng nào đó.
Có bao nhiêu khẳng định đúng?
Cho hình hộp ABCD.A'B'C'D'. Gọi G, G' lần lượt là trọng tâm của các tam giác . Chứng minh các điểm thẳng hàng.