c) Gọi M, N là trung điểm BC, CD. Xác định thiết diện của hình chóp đi qua M, N và song song với SC. Tính diện tích thiết diện.
c) Gọi . Từ I kẻ đường thẳng song song với SC cắt SA tại Q.
Ta có hay .
Gọi . Qua K kẻ đường thẳng song song với BD cắt SB, SD tại R, P.
Ta có hay
Dựa vào hình vẽ ta có thiết diện cần tìm là ngũ giác MNPQR.
Ta có
Mặt phẳng (P) cắt (SBC) theo giao tuyến RM và (P) song song với SC nên RM // SC.
Mặt phẳng (P) cắt (SCD) theo giao tuyến NP và (P) song song với SC nên NP // SC
Vậy tứ giác MNPR là hình bình hành có (do MN // BD; NP // SC; ) nên là hình chữ nhật.
Tam giác PQR có PR // BD; chứa QK nên là .
Do QK // SC và nên
Suy ra
Lại có
Suy rac) Viết phương trình tiếp tuyến song song với trục hoành của đồ thị hàm số
Cho hình chóp S.ABCD đáy là hình vuông cạnh a, mặt bên (SAB), (SAD) vuông góc với đáy, các mặt bên (SBC), (SCD) cùng tạo với đáy góc 60°
a) Chứng minh rằng
Cho hình chóp S.ABC có đáy ABC là tam giác đều cạnh 2a, và . Gọi M là trung điểm của BC, khi đó khoảng cách từ A đến đường thẳng SM bằng
Cho hình chóp S.ABC có và , gọi I là trung điểm BC. Góc giữa hai mặt phẳng (SBC) và (ABC) là góc nào sau đây?
Cho hình chóp S.ABCD có đáy ABCD là hình vuông, . Mặt phẳng qua A và vuông góc với SC cắt SB, SC, SD theo thứ tự tại H, M, K. Chọn khẳng định sai trong các khẳng định sau