Tìm một phân số có mẫu là 13, biết rằng giá trị của nó không thay đổi khi ta cộng tử với −20 và nhân mẫu với 5.
Trả lời:
Gọi phân số cần tìm là: \[\frac{a}{{13}}\left( {a \in Z} \right)\]
Theo yêu cầu bài toán:
\[\frac{a}{{13}} = \frac{{a + \left( { - 20} \right)}}{{13.5}}\]
\[\frac{{a.5}}{{13.5}} = \frac{{a + \left( { - 20} \right)}}{{13.5}}\]
a.5 = a + (−20)
a.5 – a = −20
a.4 = −20
a = (−20):4
a = −5
Vậy phân số cần tìm là \[\frac{{ - 5}}{{13}}\]
Đáp án cần chọn là: C
Số các cặp số nguyên (x; y) thỏa mãn \[\frac{1}{{18}} < \frac{x}{{12}} < \frac{y}{9} < \frac{1}{4}\] là:
So sánh các phân số \[A = \frac{{3535.232323}}{{353535.2323}};B = \frac{{3535}}{{3534}};C = \frac{{2323}}{{2322}}\]
Tìm phân số tối giản \[\frac{a}{b}\] biết rằng lấy tử số cộng với 6, lấy mẫu số cộng với 14 thì ta được phân số bằng \[\frac{3}{7}\]
So sánh \[A = \frac{{{2^5}.7 + {2^5}}}{{{2^5}{{.5}^2} - {2^5}.3}}\] và \[\frac{{{3^4}.5 - {3^6}}}{{{3^4}.13 + {3^4}}}\] với 1
Sau khi rút gọn biểu thức \[\frac{{{5^{11}}{{.7}^{12}} + {5^{11}}{{.7}^{11}}}}{{{5^{12}}{{.7}^{12}} + {{9.5}^{11}}{{.7}^{11}}}}\] ta được phân số \[\frac{a}{b}\].
Tính tổng a + b
So sánh \[A = \frac{{{{2018}^{2018}} + 1}}{{{{2018}^{2019}} + 1}}\] và \[B = \frac{{{{2018}^{2017}} + 1}}{{{{2018}^{2018}} + 1}}\]
Quy đồng mẫu hai phân số \[\frac{3}{4}\] và \[\frac{4}{5}\]ta được kết quả là:
Có bao nhiêu phân số lớn hơn \[\frac{1}{6}\] nhưng nhỏ hơn \[\frac{1}{4}\] mà có tử số là 5.
Rút gọn rồi quy đồng mẫu số các phân số \[\frac{{3.4 - 3.7}}{{6.5 + 9}}\] và \[\frac{{6.9 - 2.17}}{{63.3 - 119}}\] ta được
Lớp 6B gồm 35 học sinh có tổng chiều cao là 525 dm. Lớp 6B gồm 30 học sinh có tổng chiều cao là 456 dm. Nhận xét nào sau đây là đúng khi nói về chiều cao trung bình của các học sinh ở 2 lớp?