b) Nếu cân tại A thì AB = AC, khi đó ta có
=> MB = NC vì thế ta lại có MP = NQ. Từ giác MNPQ là hình chữ nhật.
Cho tam giác ABC, các trung tuyến BM và CN cắt nhau tại G. Gọi P là điểm đối xứng của M qua G, gọi Q là điểm đối xứng của N qua G.
a) Tứ giác MNPQ là hình gì? Vì sao?
Cho tam giác ABC vuông cân tại C. Trên các cạnh AC, BC lần lượt lấy các điểm P, Q sao cho AP = CQ. Từ điểm P vẽ PM song song với
a) Chứng minh PM = CQ.Cho tứ giác ABCD có hai đường chéo vuông góc với nhau. Gọi E, F, G, H theo thứ tự là trung điểm của các cạnh AB, BC, CD, DA
a) Chứng minh EFGH là hình bình hành.