Chủ nhật, 22/12/2024
IMG-LOGO

Câu hỏi:

20/07/2024 112

Cho hình thang ABCD (AB//CD ). Điểm E thuộc cạnh AD, điểm F thuộc cạnh BC sao cho DEDA=BFBC=13 . Gọi M, N theo thứ tự là giao điểm của EF với BD, AC.

Chứng minh rằng EM=NF.

Trả lời:

verified Giải bởi Vietjack

Media VietJack

Kẻ AA',  CC',  EE',FF'  vuông góc với BD (A',  C',  E',  F' thuộc BD).

EE'//AA'  (cùng vuông góc với BD)

 EE'AA'=DEDA=13EE'=13AA'

Tương tự có:  FF'=13CC'

CC'//AA'  (cùng vuông góc với BD)

 AA'CC'=OAOC

 EE'//FF'  (cùng vuông góc với BD)

EMMF=EE'FF'=13AA'13CC'=AA'CC'=OAOC (1)
 

Tương tự FNNE=OBOD  (2)

Măt khác vì AB//CDOAOC=OBOD  (3)

Từ (1), (2), (3) có EMMF=FNNEEMEM+MF=FNFN+NEEMEF=FNEFEM=FN .

Vậy  EM=NF

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Một đường thẳng đi qua đỉnh A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự ở E, K, G. Chứng minh rằng: 1AE=1AK+1AG

Xem đáp án » 04/01/2023 162

Câu 2:

Một đường thẳng đi qua đỉnh A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự ở E, K, G. Chứng minh rằng: Khi đường thẳng thay đổi vị trí nhưng vẫn đi qua A thì tích BK.DG có giá trị không thay đổi. 

Xem đáp án » 04/01/2023 147

Câu 3:

Cho hình thang ABCD có AB=a,  CD=b . Qua giao điểm O của hai đường chéo, kẻ đường thẳng song song với AB, cắt AD và BC theo thứ tự ở E và G. Chứng minh rằng 1OE=1OG=1a+1b .

Xem đáp án » 04/01/2023 137

Câu 4:

Một đường thẳng đi qua đỉnh A của hình bình hành ABCD cắt BD, BC, DC theo thứ tự ở E, K, G. Chứng minh rằng: AE2=EK.EG

Xem đáp án » 04/01/2023 122

Câu hỏi mới nhất

Xem thêm »
Xem thêm »