Chủ nhật, 22/12/2024
IMG-LOGO

Câu hỏi:

07/07/2024 163

Cho hàm số \(y = \frac{{\cos 2x}}{{1 - \sin x}}\). Tính \(y'\left( {\frac{\pi }{6}} \right)\) bằng:

A. \(y'\left( {\frac{\pi }{6}} \right) = 1\).

B. \(y'\left( {\frac{\pi }{6}} \right) = - 1\).

C. \(y'\left( {\frac{\pi }{6}} \right) = \sqrt 3 \).

D. \(y'\left( {\frac{\pi }{6}} \right) = - \sqrt 3 \).

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

\(y' = \frac{{\left( {\cos 2x} \right)'.\left( {1 - \sin x} \right) - \cos 2x\left( {1 - \sin x} \right)'}}{{{{\left( {1 - \sin x} \right)}^2}}} = \frac{{ - 2\sin 2x\left( {1 - \sin x} \right) + \cos 2x.cosx}}{{{{\left( {1 - \sin x} \right)}^2}}}\).

\[y'\left( {\frac{\pi }{6}} \right) = \frac{{ - 2.\frac{{\sqrt 3 }}{2}\left( {1 - \frac{1}{2}} \right) + \frac{1}{2}.\frac{{\sqrt 3 }}{2}}}{{{{\left( {1 - \frac{1}{2}} \right)}^2}}} = \frac{{ - \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{4}}}{{\frac{1}{4}}} = 4\left( { - \frac{{\sqrt 3 }}{2} + \frac{{\sqrt 3 }}{4}} \right) = - 2\sqrt 3 + \sqrt 3 = - \sqrt 3 \].

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = f\left( x \right) = \sqrt {\tan x + \cot x} \). Giá trị \(f'\left( {\frac{\pi }{4}} \right)\) bằng:

Xem đáp án » 05/01/2023 209

Câu 2:

Xét hàm số \(y = f\left( x \right) = 2\sin \left( {\frac{{5\pi }}{6} + x} \right)\). Tính giá trị \(f'\left( {\frac{\pi }{6}} \right)\) bằng:

Xem đáp án » 05/01/2023 188

Câu 3:

Cho hàm số Media VietJack . Giá trị Media VietJack  là:

Xem đáp án » 05/01/2023 182

Câu 4:

Cho hàm số \(y = f(x) = \frac{{{{\cos }^2}x}}{{1 + {{\sin }^2}x}}\). Biểu thức \(f\left( {\frac{\pi }{4}} \right) - 3f'\left( {\frac{\pi }{4}} \right)\) bằng

Xem đáp án » 05/01/2023 178

Câu 5:

Xét hàm số \[f(x) = 2\sin \left( {\frac{{5\pi }}{6} + x} \right)\]. Giá trị \[f'\left( {\frac{\pi }{6}} \right)\] bằng

Xem đáp án » 05/01/2023 176

Câu 6:

Cho hàm số \(y = f(x) = \frac{{\cos x}}{{1 - \sin x}}\). Giá trị biểu thức \(f'\left( {\frac{\pi }{6}} \right) - f'\left( { - \frac{\pi }{6}} \right)\)

Xem đáp án » 05/01/2023 175

Câu 7:

Cho hàm số \(y = \frac{{\cos x}}{{1 - \sin x}}\). Tính \(y'\left( {\frac{\pi }{6}} \right)\) bằng:

Xem đáp án » 05/01/2023 173

Câu 8:

Cho hàm số\[y = f\left( x \right) = \sin (\pi \sin x)\]. Giá trị \[f'\left( {\frac{\pi }{6}} \right)\] bằng:

Xem đáp án » 05/01/2023 169

Câu 9:

Cho hàm số \(y = \frac{{\sqrt 2 }}{{\cos 3x}}\). Khi đó \(y'\left( {\frac{\pi }{3}} \right)\) là:

Xem đáp án » 05/01/2023 166

Câu 10:

Cho \[f\left( x \right) = {\cos ^2}x - {\sin ^2}x\]. Giá trị \[f'\left( {\frac{\pi }{4}} \right)\] bằng:

Xem đáp án » 05/01/2023 163

Câu 11:

Cho hàm số \(y = f\left( x \right) = {\sin ^3}5x.{\cos ^2}\frac{x}{3}\). Giá trị đúng của \(f'\left( {\frac{\pi }{2}} \right)\) bằng

Xem đáp án » 05/01/2023 162

Câu 12:

Cho hàm số \(y = \cos 3x.\sin 2x.\) Tính \(y'\left( {\frac{\pi }{3}} \right)\) bằng:

Xem đáp án » 05/01/2023 161

Câu 13:

Hàm số \(y = f\left( x \right) = \frac{2}{{\cos \left( {\pi x} \right)}}\)\(f'\left( 3 \right)\) bằng:

Xem đáp án » 05/01/2023 157

Câu 14:

Cho hàm số \(y = f\left( x \right) = \sin \sqrt x + \cos \sqrt x \). Giá trị \(f'\left( {\frac{{{\pi ^2}}}{{16}}} \right)\) bằng:

Xem đáp án » 05/01/2023 157

Câu 15:

Cho hàm số \(y = f\left( x \right) = \frac{1}{{\sqrt {\sin x} }}\). Giá trị \(f'\left( {\frac{\pi }{2}} \right)\) bằng:

Xem đáp án » 05/01/2023 152

Câu hỏi mới nhất

Xem thêm »
Xem thêm »