Cho hàm số \(y = f\left( x \right) = {\sin ^3}5x.{\cos ^2}\frac{x}{3}\). Giá trị đúng của \(f'\left( {\frac{\pi }{2}} \right)\) bằng
Hướng dẫn giải:
Chọn A.
\(f'\left( x \right) = 3.5.\cos 5x.{\sin ^2}5x.{\cos ^2}\frac{x}{3} - {\sin ^3}5x \cdot \frac{2}{3} \cdot \sin \frac{x}{3} \cdot \cos \frac{x}{3}\)
\(f'\left( {\frac{\pi }{2}} \right) = 0 - 1.\frac{{\sqrt 3 }}{{2.3}} = - \frac{{\sqrt 3 }}{6} \cdot \)
Cho hàm số \(y = f\left( x \right) = \sqrt {\tan x + \cot x} \). Giá trị \(f'\left( {\frac{\pi }{4}} \right)\) bằng:
Xét hàm số \(y = f\left( x \right) = 2\sin \left( {\frac{{5\pi }}{6} + x} \right)\). Tính giá trị \(f'\left( {\frac{\pi }{6}} \right)\) bằng:
Cho hàm số \(y = f(x) = \frac{{{{\cos }^2}x}}{{1 + {{\sin }^2}x}}\). Biểu thức \(f\left( {\frac{\pi }{4}} \right) - 3f'\left( {\frac{\pi }{4}} \right)\) bằng
Cho hàm số \(y = f(x) = \frac{{\cos x}}{{1 - \sin x}}\). Giá trị biểu thức \(f'\left( {\frac{\pi }{6}} \right) - f'\left( { - \frac{\pi }{6}} \right)\) là
Cho hàm số \(y = \frac{{\cos x}}{{1 - \sin x}}\). Tính \(y'\left( {\frac{\pi }{6}} \right)\) bằng:
Xét hàm số \[f(x) = 2\sin \left( {\frac{{5\pi }}{6} + x} \right)\]. Giá trị \[f'\left( {\frac{\pi }{6}} \right)\] bằng
Cho hàm số \(y = \frac{{\sqrt 2 }}{{\cos 3x}}\). Khi đó \(y'\left( {\frac{\pi }{3}} \right)\) là:
Cho \[f\left( x \right) = {\cos ^2}x - {\sin ^2}x\]. Giá trị \[f'\left( {\frac{\pi }{4}} \right)\] bằng:
Cho hàm số \(y = \frac{{\cos 2x}}{{1 - \sin x}}\). Tính \(y'\left( {\frac{\pi }{6}} \right)\) bằng:
Cho hàm số \(y = \cos 3x.\sin 2x.\) Tính \(y'\left( {\frac{\pi }{3}} \right)\) bằng:
Hàm số \(y = f\left( x \right) = \frac{2}{{\cos \left( {\pi x} \right)}}\) có \(f'\left( 3 \right)\) bằng:
Cho hàm số \[y = f(x) = \sqrt {\tan x + \cot x} \]. Giá trị \[f'\left( {\frac{\pi }{4}} \right)\] bằng