Chủ nhật, 24/11/2024
IMG-LOGO

Câu hỏi:

28/06/2024 129

Tính đạo hàm cấp \(n\) của hàm số \(y = \frac{x}{{{x^2} + 5x + 6}}\)

A. \[{y^{(n)}} = \frac{{{{( - 1)}^n}.3.n!}}{{{{(x + 3)}^{n + 1}}}} + \frac{{{{( - 1)}^n}.2.n!}}{{{{(x + 2)}^{n + 1}}}}\]

B. \[{y^{(n)}} = \frac{{{{( - 1)}^n}.3.n!}}{{{{(x + 3)}^n}}} - \frac{{{{( - 1)}^n}.2.n!}}{{{{(x + 2)}^n}}}\]

C. \[{y^{(n)}} = \frac{{{{( - 1)}^n}.3.n!}}{{{{(x + 3)}^{n - 1}}}} - \frac{{{{( - 1)}^n}.2.n!}}{{{{(x + 2)}^{n - 1}}}}\]

D. \[{y^{(n)}} = \frac{{{{( - 1)}^n}.3.n!}}{{{{(x + 3)}^{n + 1}}}} - \frac{{{{( - 1)}^n}.2.n!}}{{{{(x + 2)}^{n + 1}}}}\]

Đáp án chính xác

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Chọn D.

Ta có:\(x = 3(x + 2) - 2(x + 3)\); \({x^2} + 5x + 6 = (x + 2)(x + 3)\)

Suy ra \(y = \frac{3}{{x + 3}} - \frac{2}{{x + 2}}\).

\({\left( {\frac{1}{{x + 2}}} \right)^{(n)}} = \frac{{{{( - 1)}^n}{{.1}^n}.n!}}{{{{(x + 2)}^{n + 1}}}} = \frac{{{{( - 1)}^n}.n!}}{{{{(x + 2)}^{n + 1}}}},{\rm{ }}{\left( {\frac{1}{{x + 3}}} \right)^{(n)}} = \frac{{{{( - 1)}^n}.n!}}{{{{(x + )}^{n + 1}}}}\)

Nên ta có: \[{y^{(n)}} = \frac{{{{( - 1)}^n}.3.n!}}{{{{(x + 3)}^{n + 1}}}} - \frac{{{{( - 1)}^n}.2.n!}}{{{{(x + 2)}^{n + 1}}}}\].

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Nếu \(f''\left( x \right) = \frac{{2\sin x}}{{{{\cos }^3}x}}\) thì \(f\left( x \right)\) bằng

Xem đáp án » 05/01/2023 191

Câu 2:

Cho hàm số \(y = {\rm{sin}}x\). Chọn câu sai.

Xem đáp án » 05/01/2023 179

Câu 3:

Hàm số \(y = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp \(5\) bằng :

Xem đáp án » 05/01/2023 171

Câu 4:

Cho hàm số \(y = {\rm{sin2}}x\). Chọn khẳng định đúng

Xem đáp án » 05/01/2023 155

Câu 5:

Cho hàm số \(y = f\left( x \right) = \frac{{ - {x^2} + x + 2}}{{x - 1}}\). Xét hai mệnh đề :

\(\left( I \right):y' = f'\left( x \right)\)\( = - 1 - \frac{2}{{{{(x - 1)}^2}}} < 0,\forall x \ne 1\).               \(\left( {II} \right):y'' = f''\left( x \right)\)\( = \frac{4}{{{{(x - 1)}^2}}} > 0,\forall x \ne 1\).

Mệnh đề nào đúng?

Xem đáp án » 05/01/2023 150

Câu 6:

Hàm số \[y = \frac{x}{{x - 2}}\]có đạo hàm cấp hai là:

Xem đáp án » 05/01/2023 147

Câu 7:

Hàm số \(y{\rm{ }} = \frac{{{x^2} + x + 1}}{{x + 1}}\) có đạo hàm cấp 5 bằng:

Xem đáp án » 05/01/2023 147

Câu 8:

Cho hàm số \(y = f\left( x \right) = - \frac{1}{x}\). Xét hai mệnh đề :

\(\left( I \right):y'' = f''\left( x \right) = \frac{2}{{{x^3}}}\).     \(\left( {II} \right):y''' = f'''\left( x \right) = - \frac{6}{{{x^4}}}\).

Mệnh đề nào đúng?

Xem đáp án » 05/01/2023 143

Câu 9:

Hàm số \[y = {\left( {{x^2} + {\rm{ }}1} \right)^3}\] có đạo hàm cấp ba là:

Xem đáp án » 05/01/2023 141

Câu 10:

Hàm số \(y = \sqrt {2x + 5} \) có đạo hàm cấp hai bằng:

Xem đáp án » 05/01/2023 138

Câu 11:

Hàm số \[y = x\sqrt {{x^2} + 1} \] có đạo hàm cấp \(2\) bằng :

Xem đáp án » 05/01/2023 138

Câu 12:

Hàm số \(y = f\left( x \right) = \cos \left( {2x - \frac{\pi }{3}} \right)\) . Phương trình \({f^{\left( 4 \right)}}\left( x \right) = - 8\) có nghiệm \(x \in \left[ {0;\frac{\pi }{2}} \right]\) là:

Xem đáp án » 05/01/2023 138

Câu 13:

Hàm số \[y = {\left( {2x + 5} \right)^5}\] có đạo hàm cấp \(3\) bằng :

Xem đáp án » 05/01/2023 137

Câu 14:

Hàm số \(y = \frac{{ - 2{x^2} + 3x}}{{1 - x}}\) có đạo hàm cấp \(2\) bằng :

Xem đáp án » 05/01/2023 137

Câu 15:

Tính đạo hàm cấp \(n\) của hàm số \(y = \cos 2x\)

Xem đáp án » 05/01/2023 137

Câu hỏi mới nhất

Xem thêm »
Xem thêm »