Chủ nhật, 22/12/2024
IMG-LOGO

Câu hỏi:

21/07/2024 133

Cho hàm số\(\;f\left( x \right) = \frac{{3{x^2} + 2x + 1}}{{2\sqrt {3{x^3} + 2{x^2} + 1} }}\). Giá trị\[\;f'\left( 0 \right)\]là:

A. \[\;0.\]

B. \[\frac{1}{2}.\]

Đáp án chính xác

C. Không tồn tại.

D. \[\;{\rm{1}}.\]

Trả lời:

verified Giải bởi Vietjack

Hướng dẫn giải:

Chọn B

\[\;f'\left( 0 \right) = \frac{{{{\left( {3{x^2} + 2x + 1} \right)}^\prime }.2\sqrt {3{x^3} + 2{x^2} + 1} - \left( {3{x^2} + 2x + 1} \right).{{\left( {2\sqrt {3{x^3} + 2{x^2} + 1} } \right)}^\prime }}}{{{{\left( {2\sqrt {3{x^3} + 2{x^2} + 1} } \right)}^2}}}\]

\( = \frac{{\left( {6x + 2} \right)2\sqrt {3{x^3} + 2{x^2} + 1} - \left( {3{x^2} + 2x + 1} \right)\frac{{9{x^2} + 4x}}{{\sqrt {3{x^3} + 2{x^2} + 1} }}}}{{{{\left( {2\sqrt {3{x^3} + 2{x^2} + 1} } \right)}^2}}} = \frac{{9{x^4} + 6{x^3} - 9{x^2} + 8x + 4}}{{4\left( {3{x^3} + 2{x^2} + 1} \right)\sqrt {3{x^3} + 2{x^2} + 1} }}\).

\[\;f'\left( 0 \right) = \frac{4}{8} = \frac{1}{2}.\]

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hàm số \(y = \frac{{{x^2} + x}}{{x - 2}}\) đạo hàm của hàm số tại \(x = 1\) là:

Xem đáp án » 05/01/2023 190

Câu 2:

Cho hàm số\[f\left( x \right) = \frac{1}{x}\]. Đạo hàm của \(f\) tại \[x = \sqrt 2 \]

Xem đáp án » 05/01/2023 188

Câu 3:

Cho hàm số \(y = f(x) = \frac{x}{{\sqrt {4 - {x^2}} }}\). Tính \[y'\left( 0 \right)\]bằng:

Xem đáp án » 05/01/2023 183

Câu 4:

Cho \[f\left( x \right) = {x^5} + {x^3} - 2x - 3\]. Tính \[f'\left( 1 \right) + f'\left( { - 1} \right) + 4f\left( 0 \right)\]

Xem đáp án » 05/01/2023 181

Câu 5:

Đạo hàm của hàm số \[f\left( x \right) = \frac{{x + 9}}{{x + 3}} + \sqrt {4x} \] tại điểm \[x = 1\] bằng:

Xem đáp án » 05/01/2023 178

Câu 6:

Cho \[f\left( x \right) = \frac{x}{{\sqrt {4 - {x^2}} }}\]. Tính\[f'\left( 0 \right)\]

Xem đáp án » 05/01/2023 171

Câu 7:

Cho hàm số \[f\left( x \right) = - {x^4} + 4{x^3} - 3{x^2} + 2x + 1\] xác định trên \[\mathbb{R}\]. Giá trị \[f'\left( { - 1} \right)\]bằng:

Xem đáp án » 05/01/2023 170

Câu 8:

Cho hàm số \[f\left( x \right) = {\left( {3{x^2} - 1} \right)^2}\]. Giá trị \(f'\left( 1 \right)\)

Xem đáp án » 05/01/2023 170

Câu 9:

Cho hàm số \[y = \frac{{{x^2} + x}}{{x - 2}}\], đạo hàm của hàm số tại \[x = 1\] là:

Xem đáp án » 05/01/2023 169

Câu 10:

Cho hàm số \[f\left( x \right) = \sqrt {x - 1} \]. Đạo hàm của hàm số tại \(x = 1\)

Xem đáp án » 05/01/2023 169

Câu 11:

Cho hàm số \(f\left( x \right)\) xác định trên \(\mathbb{R}\) bởi \(f\left( x \right) = \sqrt {{x^2}} \). Giá trị \(f'\left( 0 \right)\) bằng

Xem đáp án » 05/01/2023 166

Câu 12:

Đạo hàm của hàm số \(y = \frac{1}{{\sqrt x }} - \frac{1}{{{x^2}}}\) tại điểm \(x = 0\) là kết quả nào sau đây?

Xem đáp án » 05/01/2023 165

Câu 13:

Cho hàm số \(y = \frac{x}{{\sqrt {4 - {x^2}} }}.\) \(y'\left( 0 \right)\) bằng:

Xem đáp án » 05/01/2023 163

Câu 14:

Đạo hàm của hàm số \(f\left( x \right) = {\left( {{x^2} + 1} \right)^4}\) tại điểm \(x = - 1\) là:

Xem đáp án » 05/01/2023 162

Câu 15:

Với \(f(x) = \frac{{{x^2} - 2x + 5}}{{x - 1}}\). Thì \[f'\left( { - 1} \right)\]bằng:

Xem đáp án » 05/01/2023 160

Câu hỏi mới nhất

Xem thêm »
Xem thêm »