Cho hàm số f(x)=e2x khi x≥0x2+x+2 khi x<0. Biết tích phân ∫−11f(x) dx=ab+e2c ( ab là phân số tối giản). Giá trị a+b+c bằng
A. 7
B. 8
C. 9
D. 10
Cho hàm số fx xác định ℝ\12, thỏa f'x=22x−1,f0=1 và f1=2. Giá trị của biểu thức f−1+f3 bằng
Cho hàm số f(x)=x2+x+1 khi x≥02x−3 khi x<0 . Biết I=∫0π2f(2sinx−1)cosx dx+∫ee2flnxxdx=ab với ab là phân số tối giản. Giá trị của tích a+b bằng
Cho hàm số f(x)=x1+x2 khi x≥31x−4 khi x<3 . Tích phân ∫e2e4f(lnx) xdx bằng:
Cho hàm số f(x)=2x−1 khi x≥1x2 khi x<1 . Tính tích phân ∫113fx+3−2dx .
Biết I=∫152x−2+1xdx=4+aln2+bln5 với a,b∈ℤ . Tính S=a+b .
Giá trị của tích phân ∫0π2maxsinx,cosxdx bằng
Cho hàm số f(x) xác định trên ℝ\−2;1 thỏa mãn
f'x=1x2+x−2,f−3−f3=0,f0=13. Giá trị của biểu thức f−4+f1−f4 bằng
Cho hàm số y=fxliên tục trên ℝ\0; −1 thỏa mãn f1=−2ln2f2=a+bln3; a, b∈ℚxx+1.f'x+fx=x2+x.Tính a2+b2
Cho hàm số y=fx xác định và liên tục trên R thoả fx5+4x+3=2x+1, ∀x∈ℝ. Tích phân ∫−28fxdx bằng
Cho hàm số fx liên tục trên R và ∫01fxdx=4 , ∫03fxdx=6 . Tính I=∫−11f2x+1dx
Cho hàm số f(x)=4x khi x>2−2x+12 khi x≤2 . Tính tích phân I=∫03x.fx2+1x2+1dx+∫ln2ln3e2x.f1+e2xdx
Cho hàm số f(x)=1x khi x≥1x+1 khi x<1 . Tích phân ∫−21f(1−x3)dx=mn ( mn là phân số tối giản), khi đó m−2n bằng:
Cho hàm số fx có đạo hàm liên tục trên R thỏa mãn fx3+3x+1=3x+2 , với mọi x∈ℝ .Tích phân ∫15xf'xdx bằng
Cho hàm số f(x)=x2−x khi x≥0x khi x<0 . Khi đó I=∫−π2π2cosxfsinxdx bằng
Lương tháng của 50 nhân viên một công ty được biểu diễn ở biểu đồ sau:
Tính khoảng tứ phân vị của mẫu số liệu ghép nhón trên (đơn vị: triệu đồng). Làm tròn kết quả đến hàng phần trăm.
Một công ty viễn thông đang lên kế hoạch xây dựng một tháp viễn thông tại một thành phố để cung cấp dịch dụ tốt hơn. Công ty cần xác định vị trí của tháp sao cho có thể phủ sóng hiệu quả đến ba toà nhà quan trọng trong thành phố. Giả sử các toà nhà này được đặt tại các vị trí có toạ độ như sau:
Toà nhà
Tháp viễn thông phải đặt ở vị trí sao cho tổng khoảng cách từ tháp đến 3 toà nhà là nhỏ nhất. Khi đó tổng khoảng cách từ vị trí của tháp đến ba toà nhà bằng bao nhiêu? (kết quả làm tròn đến hàng phần trăm)
Phần mái của một căn nhà có dạng là khối đa diện được mô tả và gắn trên hệ trục tọa độ như hình vẽ. Tính thể tích khối đa diện của mái nhà.
Cho bảng số liệu dưới đây về thời gian (phút) tập thể dục buổi sáng của hai bạn Bình và Chi trong 30 ngày.
Thời gian
Bạn Bình
Bạn Chi
a) Khoảng biến thiên của mẫu số liệu ghép nhóm về thời gian tập thể dục của Chi là 25 (phút).
b) Tứ phân vị thứ nhất của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bạn Bình là: .
c) Khoảng tứ phân vị của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bạn Chi là .
d) Phương sai của mẫu số liệu ghép nhóm về thời gian tập thể dục buổi sáng của bạn Bình là .
Cho tứ diện đều cạnh . là điểm trên đoạn sao cho .
a) Có vectơ (khác vectơ ) có điểm đầu và điểm cuối được tạo thành từ các đỉnh của tứ diện.
b) Góc giữa hai vectơ và bằng .
c) Nếu thì .
d) Tích vô hướng .
Nồng độ thuốc tính theo mg/cm3 trong máu của bệnh nhân được tính bởi , trong đó là thời gian tính theo giờ kể từ khi tiêm cho bệnh nhân.
a) Hàm số có đạo hàm .
b) Sau khi tiêm, nồng độ thuốc trong máu của bệnh nhân giảm dần theo thời gian.
c) Nồng độ thuốc trong máu lớn nhất ở thời điểm 1 giờ sau khi tiêm.
d) Có thời điểm nồng độ trong máu của bệnh nhân đạt 0,02 mg/cm3.
PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 4. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho hàm số .
a) Đường thẳng là tiệm cận xiên của đồ thị hàm số .
b) Đạo hàm của hàm số là .
c) Giá trị cực tiểu của hàm số là .
d) Bất phương trình nghiệm đúng với mọi nếu .
Biểu đồ dưới đây biểu diễn số lượt khách hàng đặt bàn qua hình thức trực tuyến mỗi ngày trong quý III năm 2022 của một nhà hàng. Cột thứ nhất biểu diễn số ngày có từ 1 đến dưới 6 lượt đặt bàn; cột thứ hai biểu diễn số ngày có từ 6 đến dưới 11 lượt đặt bàn;... Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi biểu đồ trên.