Cho tứ diện ABCD có hai mặt (ABC) và (SBC) là hai tam giác đều cạnh a, . M là điểm trên AB sao cho AM = b (0 < b < a). (P) là mặt phẳng qua M và vuông góc với BC. Thiết diện của (P) và tứ diện SABC có diện tích bằng?
Đáp án C.
Gọi N là trung điểm của BC
Theo bài ra:
Kẻ MI // AN, MK // SA
=> Thiết diện của (P) và tứ diện SABC là tam giác KMI
Tam giác ABC và tam giác SBC là hai tam giác đều cạnh a
Trong không gian cho tam giác ABC. Tìm điểm M sao cho giá trị của biểu thức đạt giá trị nhỏ nhất.
Cho hình chóp S.ABC có đáy là tam giác vuông tại A và Hình chiếu vuông góc của S trên mặt phẳng (ABC) là trung điểm H của cạnh AB. Góc giữa hai mặt phẳng (SBC) và (ABC) bằng 30o. Tính khoảng cách từ trung điểm M của cạnh BC đến mặt phẳng (SAC)
Cho lăng trụ đứng ABCD.A'B'C'D' có đáy ABCD là hình thoi cạnh a và . Gọi O, O' lần lượt là tâm của hai đáy, gọi S là trung điểm của OO'. Tính khoảng cách từ O tới mặt phẳng (SAB) biết OO' = 2a
Cho hình chóp đều S.ABC có cạnh đáy bằng a. Gọi O là tâm của đáy và Tính khoảng cách từ O tới SA