Đáp án D
Phương pháp:
Từ biểu thức đã có tìm tọa độ điểm A, rồi tìm ảnh của điểm qua định nghĩa phép vị tự.
Cách giải:
Ta có \(\overrightarrow {OA} = \overrightarrow i - 7\overrightarrow j \Rightarrow \left\{ \begin{array}{l}{x_A} = 1\\{y_A} = - 7\end{array} \right.\).
Nên \({V_{\left( {O; - 3} \right)}}\left( A \right) = A' \Leftrightarrow \overrightarrow {OA'} = - 3\overrightarrow {OA} \Rightarrow A'\left( { - 3;21} \right)\).
Tìm số hạng không chứa x trong khai triển của biểu thức \({\left( {{x^2} - \frac{2}{{{x^2}}}} \right)^n}\) biết
\(3C_n^1 + {3^2}C_n^2 + {3^3}C_n^3 + ... + {3^n}C_n^{n - 1} + {3^n}C_n^n = 65535\) với \(n \in {\mathbb{N}^*},x \ne 0\).