Cho hàm số có đồ thị (C). Gọi A, B là hai điểm phân biệt thuộc (C) và tiếp tuyến của (C) tại A, B song song với nhau. Đường thẳng AB cắt các trục Ox, Oy lần lượt tại M, N diện tích tam giác OMN bằng . Độ dài đoạn MN bằng
A.
B.
C.
D.
Hướng dẫn giải
Ta có Gọi .
Khi đó .
Do đó tâm đối xứng của (C) là trung điểm của đoạn thẳng AB.
Gọi hệ số góc của đường thẳng AB là k.
Phương trình đường thẳng AB là .
Điều kiện để đường thẳng cắt (C) tại hai điểm phân biệt A, B là phương trình có hai nghiệm phân biệt
Ta có có hai nghiệm phân biệt khi và chỉ khi
Vì M, N là giao điểm của AB với Ox, Oy nên .
Suy ra
Ta có
+ Với
+ Với
Vậy trong cả hai trường hợp thì .
Chọn B.
Cho hàm số có đồ thị hàm số (C). Hệ số góc k của tiếp tuyến với đồ thị tại điểm có tung độ bằng 4 là
Cho hàm số có đồ thị là (C). Phương trình tiếp tuyến tại điểm M thuộc (C) sao cho tiếp tuyến đó vuông góc với IM, I là tâm đối xứng của (C) là
Cho hàm số có đồ thị (C). Gọi S là tập hợp các giá trị thực của tham số m để đường thẳng cắt (C) tại hai điểm phân biệt A, B sao cho tiếp tuyến của (C) tại A và B lần lượt có hệ số góc là thỏa mãn . Tổng các giá trị tất cả các phần tử của S bằng
Cho hàm số có đồ thị (C). Phương trình tiếp tuyến của (C) tại giao điểm của (C) với trục tung là
Gọi d là tiếp tuyến của hàm số tại điểm có hoành độ bằng –3. Khi đó d tạo với hai trục tọa độ một tam giác có diện tích bằng
Cho hàm số có đồ thị (C). Có bao nhiêu điểm A thuộc đồ thị (C) sao cho tiếp tuyến của (C) tại A cắt (C) tại hai điểm phân biệt ( M, N khác A ) thỏa mãn
Có bao nhiêu tiếp tuyến của đồ thị hàm số song song với đường thẳng ?
Cho hàm số có đồ thị (C). Tiếp tuyến tại điểm tạo với hai tiệm cận của (C) một tam giác có bán kính đường tròn ngoại tiếp bằng . Giá trị của bằng
Phương trình tiếp tuyến của đồ thị hàm số song song với trục Ox là
Cho hàm số có đồ thị (C). Có bao nhiêu cặp điểm A, B thuộc (C) mà tiếp tuyến tại đó song song với nhau?
Tập hợp tất cả các giá trị thực của tham số m để đường thẳng tiếp xúc với đồ thị hàm số là
Gọi đường thẳng là phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ . Giá trị a-b bằng
Cho hàm số có đồ thị (C). Tiếp tuyến tại điểm N của (C) cắt đồ thị (C) tại điểm thứ hai là . Tọa độ điểm N là
Cho hàm số xác định và có đạo hàm trên R thỏa mãn Phương trình tiếp tuyến của đồ thị hàm số tại điểm có hoành độ bằng 1 là
Cho đường cong và điểm . Hai điểm A và B thuộc cùng một nhánh của đồ thị sao cho . Gọi và lần lượt là hệ số góc của tiếp tuyến tại A và B. Khi tiếp tuyến tại A và B của (C) tạo với nhau một góc , giá trị biểu thức bằng