Cắt một khối nón bởi mặt phẳng đi qua trục của nó, ta được một tam giác vuông cân có diện tích bằng 8. Khẳng định nào sau đây sai ?
D. Khối nón có thể tích bằng \(\frac{{16\pi \sqrt 2 }}{3}\)
Đáp án B
Phương pháp:
Diện tích hình tròn bán kính R: \(S = \pi {R^2}\)
Diện tích xung quanh của khối nón: \({S_{xq}} = \pi Rl\)
Thể tích khối nón: \(V = \frac{1}{3}\pi {R^2}h\)
Cách giải:
Theo đề bài, ta có tam giác SAB vuông cân tại S và \({S_{\Delta SAB}} = 8\)
Ta có: \({S_{\Delta SAB}} = \frac{1}{2}.SO.AB = \frac{1}{2}.OA.2OA = O{A^2} = 8 \Rightarrow OA = 2\sqrt 2 \)
\( \Rightarrow \) Đường tròn đáy có bán kính \(R = OA = 2\sqrt 2 \)
Diện tích đáy: \(S = \pi {R^2} = \pi {\left( {2\sqrt 2 } \right)^2} = 8\pi \)
Độ dài đường sinh: \(l = SA = OA.\sqrt 2 = 2\sqrt 2 .\sqrt 2 = 4\)
Diện tích xung quanh của khối nón: \({S_{xq}} = \pi Rl = \pi .2\sqrt 2 .4 = 8\sqrt 2 \pi \)
Đường cao: \(h = SO = OA = 2\sqrt 2 \)
Thể tích khối nón: \(V = \frac{1}{3}\pi {R^2}h = \frac{1}{3}\pi .{\left( {2\sqrt 2 } \right)^2}.2\sqrt 2 = \frac{{16\sqrt 2 \pi }}{3}\)
Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m và M. Tích M.m bằng
Thể tích của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh \(2\sqrt 2 \) bằng
Cho hình chóp tam giác đều S.ABC với \(SA = \sqrt 6 ,\,\,AB = 3\). Diện tích của mặt cầu có tâm A và tiếp xúc với mặt phẳng (SBC) bằng
Cho lăng trụ tứ giác đều có cạnh bằng a và cạnh bên bằng 2a. Diện tích xung quanh của hình lăng trụ đã cho bằng
Cho biểu thức \(A = {\log _{\sqrt a }}{a^2} + {\log _{\frac{1}{2}}}{4^a},\,\,a > 0,\,\,a \ne 1\). Khẳng định nào sau đây đúng?
Biết rằng phương trình \({5^{2x + \sqrt {1 - 2x} }} - m{.5^{1 - \sqrt {1 - 2x} }} = {4.5^x}\) có nghiệm khi và chỉ khi \(m \in \left[ {a;b} \right]\), với m là tham số. Giá trị của \(b - a\) bằng
Số giao điểm của đồ thị hàm số \(y = {x^3} - 4x + 1\) và đường thẳng \(y = x + 1\) bằng:
Cho hàm số \(y = {\log _2}x\). Xét các phát biểu
(1) Hàm số \(y = {\log _2}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) .
(2) Hàm số \(y = {\log _2}x\) có một điểm cực tiểu.
(3) Đồ thị hàm số \(y = {\log _2}x\) có tiệm cận.
Số phát biểu đúng là
Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\) và \(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
Tổng tất cả các nghiệm của phương trình \({4^x} - {3.2^{x + 1}} + 8 = 0\)
Phương trình \({3.9^x} - {7.6^x} + {2.4^x} = 0\) có hai nghiệm \({x_1},\,{x_2}\). Tổng \({x_1} + {x_2}\) bằng
Cho khối chóp S.ABC có ba cạnh SA, SB, SC cùng độ dài bằng a và vuông góc với nhau từng đôi một. Thể tích của khối chóp S.ABC bằng
Diện tích toàn phần của hình trụ có thiết diện qua trục là hình vuông cạnh a bằng