Hàm số nào sau đây có giá trị nhỏ nhất trên đoạn \(\left[ {0;2} \right]\) bằng –2 ?
D. \(y = {2^x} - 2\)
Đáp án C
Phương pháp:
Sử dụng phương pháp tìm GTNN, GTLN của hàm số.
Cách giải:
+) \(y = {x^3} - 10 \Rightarrow y' = 3{x^2} \ge 0,\,\,\forall x\)
\( \Rightarrow \) Hàm số đồng biến trên \(\left[ {0;2} \right] \Rightarrow \mathop {\min }\limits_{\left[ {0;2} \right]} \left( {{x^3} - 10} \right) = {0^3} - 10 = - 10\)
+) \(y = \sqrt {x + 2} - 2 \Rightarrow y' = \frac{1}{{2\sqrt {x + 2} }} > 0,\,\,\forall x \in \left[ {0;2} \right]\)
\( \Rightarrow \) Hàm số đồng biến trên \(\left[ {0;2} \right] \Rightarrow \mathop {\min }\limits_{\left[ {0;2} \right]} \left( {\sqrt {x + 2} - 2} \right) = \sqrt {0 + 2} - 2 = \sqrt 2 - 2\)
+) \(y = \frac{{x - 2}}{{x + 1}} \Rightarrow y' = \frac{3}{{{{\left( {x + 1} \right)}^2}}} > 0,\,\,\forall x \in \left[ {0;2} \right]\)
\( \Rightarrow \) Hàm số đồng biến trên \(\left[ {0;2} \right] \Rightarrow \mathop {\min }\limits_{\left[ {0;2} \right]} \left( {\frac{{x - 2}}{{x + 1}}} \right) = \frac{{0 - 2}}{{0 + 1}} = - 2\)
+) \(y = {2^x} - 2 \Rightarrow y' = {2^x}.\ln 2 > 0,\,\,\forall x\)
\( \Rightarrow \) Hàm số đồng biến trên \(\left[ {0;2} \right] \Rightarrow \mathop {\min }\limits_{\left[ {0;2} \right]} \left( {{2^x} - 2} \right) = {2^0} - 2 = 1 - 2 = - 1\)
Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m và M. Tích M.m bằng
Thể tích của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh \(2\sqrt 2 \) bằng
Cho hình chóp tam giác đều S.ABC với \(SA = \sqrt 6 ,\,\,AB = 3\). Diện tích của mặt cầu có tâm A và tiếp xúc với mặt phẳng (SBC) bằng
Cho lăng trụ tứ giác đều có cạnh bằng a và cạnh bên bằng 2a. Diện tích xung quanh của hình lăng trụ đã cho bằng
Cho biểu thức \(A = {\log _{\sqrt a }}{a^2} + {\log _{\frac{1}{2}}}{4^a},\,\,a > 0,\,\,a \ne 1\). Khẳng định nào sau đây đúng?
Biết rằng phương trình \({5^{2x + \sqrt {1 - 2x} }} - m{.5^{1 - \sqrt {1 - 2x} }} = {4.5^x}\) có nghiệm khi và chỉ khi \(m \in \left[ {a;b} \right]\), với m là tham số. Giá trị của \(b - a\) bằng
Số giao điểm của đồ thị hàm số \(y = {x^3} - 4x + 1\) và đường thẳng \(y = x + 1\) bằng:
Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\) và \(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
Cho hàm số \(y = {\log _2}x\). Xét các phát biểu
(1) Hàm số \(y = {\log _2}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) .
(2) Hàm số \(y = {\log _2}x\) có một điểm cực tiểu.
(3) Đồ thị hàm số \(y = {\log _2}x\) có tiệm cận.
Số phát biểu đúng là
Tổng tất cả các nghiệm của phương trình \({4^x} - {3.2^{x + 1}} + 8 = 0\)
Cho khối chóp S.ABC có ba cạnh SA, SB, SC cùng độ dài bằng a và vuông góc với nhau từng đôi một. Thể tích của khối chóp S.ABC bằng
Cho hình chóp S.ABCD có đáy là hình thang vuông tại A và B, \(AB = BC = 2,\,\,AD = 4\); mặt bên SAD nằm trong mặt phẳng vuông góc với đáy và có diện tích bằng 6. Thể tích khối S.BCD bằng
Cho phương trình \({\log _5}\left( {{x^2} + x + 1} \right) = 1\). Khẳng định nào sau đây đúng?