Bạn Nam làm một cái máng thoát nước mưa, mặt cắt là hình thang cân có độ dài hai cạnh bên và cạnh đáy đều bằng 20cm, thành máng nghiêng với mặt đất một góc \(\varphi \,\left( {{0^0} < \varphi < {{90}^0}} \right)\). Bạn Nam phải nghiêng thành máng một góc trong khoảng nào sau đây để lượng mưa thoát được là nhiều nhất?
D. \(\left[ {{{50}^0};{{70}^0}} \right)\)
Đáp án D
Phương pháp:
Tính thể tích của khối lăng trụ đứng, có đáy là hình thang cân mà hai cạnh bên bằng đáy bé và bằng 20cm.
Thể tích lớn nhất khi diện tích của hình thang cân lớn nhất.
Cách giải:
Thể tích nước lớn nhất khi diện tích của hình thang cân lớn nhất
Gọi độ dài đường cao là h. Khi đó, \(AE = BF = h\), từ đó, suy ra \(DE = CF = \sqrt {{{20}^2} - {h^2}} = \sqrt {400 - {h^2}} \)
\(CD = DE + EF + FC = 2\sqrt {400 - {h^2}} + 20\)
Diện tích hình thang: \(S = \left( {AB + CD} \right).AE:2 = \frac{{20 + 2\sqrt {400 - {h^2}} + 20}}{2}.h = 20h + h\sqrt {400 - {h^2}} \)
\(S' = 20 + \sqrt {400 - {h^2}} - h.\frac{h}{{\sqrt {400 - {h^2}} }} = 20 + \frac{{400 - 2{h^2}}}{{\sqrt {400 - {h^2}} }}\)
\(S' = 0 \Leftrightarrow 20\sqrt {400 - {h^2}} + 400 - {2^2} = 0 \Leftrightarrow {h^2} = 300 \Rightarrow h = 10\sqrt 3 \)
Bảng xét dấu:
Diện tích hình thang lớn nhất khi \(h = 10\sqrt 3 \)
Khi đó, \(\sin \varphi = \frac{{10\sqrt 3 }}{0} = \frac{{\sqrt 3 }}{2} \Rightarrow \varphi = {60^0} \Rightarrow \varphi \in \left[ {{{50}^0};{{70}^0}} \right)\)
Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m và M. Tích M.m bằng
Thể tích của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh \(2\sqrt 2 \) bằng
Cho hình chóp tam giác đều S.ABC với \(SA = \sqrt 6 ,\,\,AB = 3\). Diện tích của mặt cầu có tâm A và tiếp xúc với mặt phẳng (SBC) bằng
Cho lăng trụ tứ giác đều có cạnh bằng a và cạnh bên bằng 2a. Diện tích xung quanh của hình lăng trụ đã cho bằng
Cho biểu thức \(A = {\log _{\sqrt a }}{a^2} + {\log _{\frac{1}{2}}}{4^a},\,\,a > 0,\,\,a \ne 1\). Khẳng định nào sau đây đúng?
Biết rằng phương trình \({5^{2x + \sqrt {1 - 2x} }} - m{.5^{1 - \sqrt {1 - 2x} }} = {4.5^x}\) có nghiệm khi và chỉ khi \(m \in \left[ {a;b} \right]\), với m là tham số. Giá trị của \(b - a\) bằng
Số giao điểm của đồ thị hàm số \(y = {x^3} - 4x + 1\) và đường thẳng \(y = x + 1\) bằng:
Cho hàm số \(y = {\log _2}x\). Xét các phát biểu
(1) Hàm số \(y = {\log _2}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) .
(2) Hàm số \(y = {\log _2}x\) có một điểm cực tiểu.
(3) Đồ thị hàm số \(y = {\log _2}x\) có tiệm cận.
Số phát biểu đúng là
Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\) và \(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
Tổng tất cả các nghiệm của phương trình \({4^x} - {3.2^{x + 1}} + 8 = 0\)
Phương trình \({3.9^x} - {7.6^x} + {2.4^x} = 0\) có hai nghiệm \({x_1},\,{x_2}\). Tổng \({x_1} + {x_2}\) bằng
Cho khối chóp S.ABC có ba cạnh SA, SB, SC cùng độ dài bằng a và vuông góc với nhau từng đôi một. Thể tích của khối chóp S.ABC bằng
Cho \(P = \sqrt[3]{a}.{a^{\frac{1}{3}}},\,\,a > 0\). Khẳng định nào sau đây đúng?