Cho hình chóp S.ABCD có đáy ABCD là hình vuông cạnh 2a, \(SA \bot \left( {ABCD} \right)\) và \(SA = a\). Gọi E là trung điểm của cạnh AB. Diện tích mặt cầu ngoại tiếp hình chóp bằng .SBCE
D. \(12\pi {a^2}\)
Đáp án A
Phương pháp:
Sử dụng phương pháp tọa độ hóa.
Cách giải:
Gắn hệ trục tọa độ như hình vẽ.
Trong đó, \(B\left( {2a;0;0} \right),\,\,C\left( {2a;2a;0} \right),\,\,E\left( {a;0;0} \right),\,\,S\left( {0;0;a} \right)\)
Gọi \(I\left( {{x_0};{y_0};{z_0}} \right)\) là tâm của mặt cầu ngoại tiếp hình chóp S.BEC. Khi đó, \[I{S^2} = I{B^2} = I{C^2} = I{E^2}\]
\( \Leftrightarrow \left\{ \begin{array}{l}x_0^2 + y_0^2 + {\left( {{z_0} - a} \right)^2} = {\left( {{x_0} - 2a} \right)^2} + y_0^2 + z_0^2\\x_0^2 + y_0^2 + {\left( {{z_0} - a} \right)^2} = {\left( {{x_0} - 2a} \right)^2} + {\left( {{y_0} - 2a} \right)^2} + z_0^2\\x_0^2 + y_0^2 + {\left( {{z_0} - a} \right)^2} = {\left( {{x_0} - a} \right)^2} + y_0^2 + z_0^2\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 2a{z_0} + {a^2} = - 4a{x_0} + 4{a^2}\\ - 2a{z_0} + {a^2} = - 4a{x_0} + 4{a^2} - 4a{y_0} + 4{a^2}\\ - 2a{z_0} + {a^2} = - 2a{x_0} + {a^2}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}4{x_0} - 2{z_0} = 3a\\4{x_0} + 4{y_0} - 2{z_0} = 7a\\{x_0} - {z_0} = 0\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}{x_0} = \frac{{3a}}{2}\\{y_0} = a\\{z_0} = \frac{{3a}}{2}\end{array} \right.\)
Bán kính mặt cầu: \(R = SI = \sqrt {x_0^2 + y_0^2 + {{\left( {{z_0} - a} \right)}^2}} = \sqrt {\frac{{9{a^2}}}{a} + {a^2} + \frac{{{a^2}}}{4}} = \frac{{a\sqrt {14} }}{2}\)
Diện tích mặt cầu: \(S = 4\pi {R^2} = 14\pi {a^2}\)
Gọi giá trị nhỏ nhất, giá trị lớn nhất của hàm số \(y = \ln x\) trên đoạn \(\left[ {\frac{1}{{{e^2}}};e} \right]\) lần lượt là m và M. Tích M.m bằng
Thể tích của khối cầu tiếp xúc với tất cả các cạnh của hình lập phương cạnh \(2\sqrt 2 \) bằng
Cho hình chóp tam giác đều S.ABC với \(SA = \sqrt 6 ,\,\,AB = 3\). Diện tích của mặt cầu có tâm A và tiếp xúc với mặt phẳng (SBC) bằng
Biết rằng phương trình \({5^{2x + \sqrt {1 - 2x} }} - m{.5^{1 - \sqrt {1 - 2x} }} = {4.5^x}\) có nghiệm khi và chỉ khi \(m \in \left[ {a;b} \right]\), với m là tham số. Giá trị của \(b - a\) bằng
Cho lăng trụ tứ giác đều có cạnh bằng a và cạnh bên bằng 2a. Diện tích xung quanh của hình lăng trụ đã cho bằng
Cho biểu thức \(A = {\log _{\sqrt a }}{a^2} + {\log _{\frac{1}{2}}}{4^a},\,\,a > 0,\,\,a \ne 1\). Khẳng định nào sau đây đúng?
Số giao điểm của đồ thị hàm số \(y = {x^3} - 4x + 1\) và đường thẳng \(y = x + 1\) bằng:
Cho các hàm số \(y = {\log _a}x,\,\,\,y = {\log _b}x\) và \(y = {c^x}\) (với a, b, c là các số dương khác 1) có đồ thị như hình vẽ. Khẳng định nào sau đây đúng?
Cho hàm số \(y = {\log _2}x\). Xét các phát biểu
(1) Hàm số \(y = {\log _2}x\) đồng biến trên khoảng \(\left( {0; + \infty } \right)\) .
(2) Hàm số \(y = {\log _2}x\) có một điểm cực tiểu.
(3) Đồ thị hàm số \(y = {\log _2}x\) có tiệm cận.
Số phát biểu đúng là
Tổng tất cả các nghiệm của phương trình \({4^x} - {3.2^{x + 1}} + 8 = 0\)
Diện tích toàn phần của hình trụ có thiết diện qua trục là hình vuông cạnh a bằng
Cho khối chóp S.ABC có ba cạnh SA, SB, SC cùng độ dài bằng a và vuông góc với nhau từng đôi một. Thể tích của khối chóp S.ABC bằng
Cho phương trình \({\log _5}\left( {{x^2} + x + 1} \right) = 1\). Khẳng định nào sau đây đúng?