Cho hàm số \(y = f\left( x \right)\)có bảng biến thiên như sau
Phương trình \(f\left( {f\left( x \right)} \right) = 0\)có nhiều nhất bao nhiêu nghiệm?
Lời giải
Chọn C
Ta có: \(f\left( {f\left( x \right)} \right) = 0 \Leftrightarrow \left[ \begin{array}{l}f\left( x \right) = {x_1}{\rm{ }}\left( {{x_1} < - 3} \right){\rm{ }}\\f\left( x \right) = {x_2}{\rm{ }}\left( { - 3 < {x_2} < 2} \right)\\f\left( x \right) = {x_3}{\rm{ }}\left( {{x_3} > 2} \right){\rm{ }}\end{array} \right.\).
Dựa vào bảng biến thiên
+ Trường hợp 1: \(f\left( x \right) = {x_1}{\rm{ }}\left( {{x_1} < - 3} \right)\)có 1 nghiệm.
+ Trường hợp 2: \(f\left( x \right) = {x_2}{\rm{ }}\left( { - 3 < {x_2} < 2} \right)\)có nhiều nhất 3 nghiệm.
+ Trường hợp 3: \(f\left( x \right) = {x_3}{\rm{ }}\left( {{x_3} > 2} \right)\)có 1 nghiệm.
Vậy phương trình \(f\left( {f\left( x \right)} \right) = 0\)có nhiều nhất 5 nghiệm.
Cho hàm số \(y = f\left( x \right)\) có bảng xét dấu đạo hàm như sau:
Hàm số \(y = 3f\left( {x + 3} \right) - {x^3} + 12x\) nghịch biến trên khoảng nào sau đây?