Một xưởng in có 8 máy in, mỗi máy in được 4000 bản in khổ giấy A4 trong một giờ. Chi phí để bảo trì, vận hành một máy mỗi lần in là 50 nghìn đồng. Chi phí in ấn của n máy chạy trong một giờ là \(20\left( {3n + 5} \right)\) nghìn đồng. Hỏi nếu in 50 000 bản in khổ A4 thì phải sử dụng bao nhiêu máy để thu được lãi nhiều nhất?
D. 4 máy
Đáp án C
Cách giải:
Nhận xét: Để thu được nhiều lãi nhất thì tổng chi phí bảo trì, chi phí in ấn là ít nhất.
Gọi số máy in cần sử dụng là n (máy), \(n \in \left( {0;8} \right)\)
Số giờ cần để in hết 50 000 bản in là: \(\frac{{50\,000}}{{4000n}} = \frac{{25}}{{2n}}\) (giờ)
Chi phí để n máy hoạt động trong \(\frac{{25}}{{2n}}\) giờ là:
\(50.n + 20\left( {3n + 5} \right).\frac{{25}}{{2n}} = 50n + 750 + \frac{{1250}}{n} \ge 2.\sqrt {50n.\frac{{1250}}{n}} + 750 = 500 + 750 = 1250\)
Dấu “=” xảy ra khi và chỉ khi: \(50n = \frac{{1250}}{n} \Leftrightarrow {n^2} = \frac{{1250}}{{50}} = 25 \Rightarrow n = 5\)
Vậy, nếu in 50 000 bản in khổ A4 thì phải sử dụng 5 máy sẽ thu được lãi nhiều nhất.
Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\) và SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.
Đạo hàm của hàm số \(y = x\ln x\) trên khoảng \(\left( {0; + \infty } \right)\) là
Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\) là
Cho hình trụ có bán kính đáy bằng r, chiều cao bằng h. Khẳng định nào sai?
Cho hình chóp đều S.ABCD có tất cả các cạnh bằng nhau. Khẳng định nào đúng?
Tìm m để phương trình \({2^{\left| x \right|}} = \sqrt {{m^2} - {x^2}} \) có 2 nghiệm phân biệt.
Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)
Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;2;3} \right),\,\,B\left( {2;1;5} \right),\,\,C\left( {2;4;2} \right)\). Góc giữa hai đường thẳng AB và AC bằng
Tìm số nghiệm nguyên của bất phương trình \(\sqrt {25 - {x^2}} {\log _2}\left( {{x^2} - 4x + 5} \right) \ge 0\)
Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau
Cho hình hộp chữ nhật ABCD.A’B’C’D’ có \(AB = a,\,\,AD = \sqrt 2 a,\,\,AC' = 2\sqrt 3 a\). Tính theo a thể tích V của khối hộp ABCD.A’B’C’D’.
Ông An gửi 100 triệu đồng vào ngân hàng với hình thức lãi kép, kỳ hạn 1 năm với lãi suất năm. Sau 5 năm ông rút toàn bộ tiền và dùng một nửa để sửa nhà, số tiền còn lại ông tiếp tục gửi vào ngân hàng với kỳ hạn và lãi suất như lần trước. Số tiền lãi mà ông An nhận được sau 10 năm gửi gần nhất với giá trị nào sau đây? 8%/
Với a, b, c là các số thực dương, a và c khác 1 và \(\alpha \ne 0\). Mệnh đề nào dưới đây sai?
Số đường tiệm cận ngang của đồ thị hàm số \(y = x + 1 + \sqrt {{x^2} + 2x + 3} \)