IMG-LOGO

Câu hỏi:

30/06/2024 56

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, \(AB = a,\,\,AD = \sqrt 2 a\), góc giữa hai mặt phẳng (SAC) (ABCD) bằng \({60^0}\). Gọi H là trung điểm của AB. Biết rằng tam giác SAB cân tại S và nằm trong mặt phẳng vuông góc với đáy. Tính theo a bán kính mặt cầu ngoại tiếp hình chóp S.HAC.

A. \(\frac{{9\sqrt 2 a}}{8}\)

B. \(\frac{{\sqrt {62} a}}{{16}}\)

C. \(\frac{{\sqrt {62} a}}{8}\)

Đáp án chính xác


D. \(\frac{{\sqrt {31} a}}{{32}}\)


Trả lời:

verified Giải bởi Vietjack

Đáp án C

Phương pháp:

+) Gọi I là tâm đường tròn ngoại tiếp tam giác AHC và E là trung điểm của BC.

+) Qua I dựng đường thẳng song song với SH, qua E dựng đường thẳng song song với IH, hai đường thẳng này cắt nhau tại O \( \Rightarrow \) O là tâm mặt cầu ngoại tiếp chóp S.AHC. O

+) Tính IH, sử dụng công thức \(R = \frac{{abc}}{{4S}}\) với a, b, c là ba cạnh của tam giác AHC, S là diện tích tam giác AHC, R là bán kính đường tròn ngoại tiếp tam giác AHC.

+) Tính HE.

+) Sử dụng định lí Pytago tính OH.

Cách giải

Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = căn bậc hai a, góc giữa (ảnh 1)
Cho hình chóp S.ABCD có đáy ABCD là hình chữ nhật, AB = a, AD = căn bậc hai a, góc giữa (ảnh 2)

Kẻ HK vuông góc AB tại K, gọi I là tâm đường tròn ngoại tiếp tam giác AHC, E là trung điểm của SH.

Ta có: H là trung điểm của AB, tam giác SAB cân tại S \( \Rightarrow SH \bot AB\)

SAB nằm trong mặt phẳng vuông góc với đáy \( \Rightarrow SH \bot \left( {ABCD} \right)\)

\(\Delta AHK\) đồng dạng \(\Delta ACB\) (g.g)

\( \Rightarrow \frac{{AH}}{{AC}} = \frac{{HK}}{{BC}} \Leftrightarrow \frac{{\frac{a}{2}}}{{\sqrt {{a^2} + {{\left( {\sqrt 2 a} \right)}^2}} }} = \frac{{HK}}{{\sqrt 2 a}} \Leftrightarrow HK = \frac{a}{{\sqrt 6 }}\)

Ta có: \(HK \bot AC,\,\,\,SH \bot AC \Rightarrow AC \bot \left( {SHK} \right) \Rightarrow AC \bot SK\)

\( \Rightarrow \left( {\left( {SAC} \right);\left( {ABCD} \right)} \right) = SKH = {60^0}\)

\(\Delta SKH\) vuông tại H, \(SKH = {60^0} \Rightarrow SH = HK.\tan {60^0} = \frac{a}{{\sqrt 6 }}.\sqrt 3 = \frac{a}{{\sqrt 2 }} \Rightarrow EH = \frac{a}{{2\sqrt 2 }}\)

Ta có: \({S_{\Delta AHC}} = \frac{1}{2}{S_{\Delta ABC}} = \frac{1}{2}.\frac{1}{2}.{S_{ABCD}} = \frac{{{S_{ABCD}}}}{4} = \frac{{{a^2}\sqrt 2 }}{4}\)

I là tâm đường tròn ngoại tiếp tam giác AHB

\( \Rightarrow IH = R = \frac{{AH.HC.AC}}{{4{S_{\Delta AHC}}}} = \frac{{\frac{a}{2}.\sqrt {{{\left( {\frac{a}{2}} \right)}^2} + {{\left( {\sqrt 2 a} \right)}^2}} .\sqrt {{a^2} + {{\left( {\sqrt 2 a} \right)}^2}} }}{{4.\frac{{{a^2}\sqrt 2 }}{4}}} = \frac{{\frac{a}{2}.\frac{{3a}}{2}.\sqrt 3 a}}{{{a^2}\sqrt 2 }} = \frac{{3\sqrt 3 a}}{{4\sqrt 2 }}\)

Tứ giác OEHI là hình chữ nhật

\( \Rightarrow OH = \sqrt {I{H^2} + E{H^2}} = \sqrt {{{\left( {\frac{{3\sqrt 2 a}}{{4\sqrt 2 }}} \right)}^2} + {{\left( {\frac{a}{{2\sqrt 2 }}} \right)}^2}} = \sqrt {\frac{{27{a^2}}}{{32}} + \frac{{{a^2}}}{8}} = \frac{{\sqrt {62} a}}{8}\)

Vậy, bán kính mặt cầu ngoại tiếp hình chóp S.HAC \(\frac{{\sqrt {62} a}}{8}\)

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Cho hình chóp S.ABCD có đáy ABCD là hình thoi cạnh a, \(ABC = {120^0}\). Cạnh bên \(SA = \sqrt 3 a\)SA vuông góc với (ABCD). Tính theo a thể tích V của khối chóp S.BCD.

Xem đáp án » 27/06/2023 71

Câu 2:

Đạo hàm của hàm số \(y = x\ln x\) trên khoảng \(\left( {0; + \infty } \right)\)

Xem đáp án » 27/06/2023 70

Câu 3:

Số nghiệm của phương trình \({\log _3}\left( {{x^2} + 4x} \right) + {\log _{\frac{1}{3}}}\left( {2x + 3} \right) = 0\)

Xem đáp án » 27/06/2023 70

Câu 4:

Tìm mệnh đề đúng trong các mệnh đề sau

Xem đáp án » 27/06/2023 69

Câu 5:

Cho hình trụ có bán kính đáy bằng r, chiều cao bằng h. Khẳng định nào sai?

Xem đáp án » 27/06/2023 69

Câu 6:

Cho hình chóp đều S.ABCD có tất cả các cạnh bằng nhau. Khẳng định nào đúng?

Xem đáp án » 27/06/2023 67

Câu 7:

Tìm số nghiệm nguyên của bất phương trình \(\sqrt {25 - {x^2}} {\log _2}\left( {{x^2} - 4x + 5} \right) \ge 0\)

Xem đáp án » 27/06/2023 67

Câu 8:

Tìm m để phương trình \({2^{\left| x \right|}} = \sqrt {{m^2} - {x^2}} \) có 2 nghiệm phân biệt.

Xem đáp án » 27/06/2023 67

Câu 9:

Hàm số nào sau đây không đồng biến trên khoảng \(\left( { - \infty ; + \infty } \right)\)

Xem đáp án » 27/06/2023 66

Câu 10:

Ông An gửi 100 triệu đồng vào ngân hàng với hình thức lãi kép, kỳ hạn 1 năm với lãi suất năm. Sau 5 năm ông rút toàn bộ tiền và dùng một nửa để sửa nhà, số tiền còn lại ông tiếp tục gửi vào ngân hàng với kỳ hạn và lãi suất như lần trước. Số tiền lãi mà ông An nhận được sau 10 năm gửi gần nhất với giá trị nào sau đây? 8%/

Xem đáp án » 27/06/2023 66

Câu 11:

Trong không gian với hệ tọa độ Oxyz, cho các điểm \(A\left( {1;2;3} \right),\,\,B\left( {2;1;5} \right),\,\,C\left( {2;4;2} \right)\). Góc giữa hai đường thẳng AB AC bằng

Xem đáp án » 27/06/2023 66

Câu 12:

Cho hàm số \(y = \frac{{ax + b}}{{x - c}}\) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các khẳng định sau

Cho hàm số y = (ax + b) / (x - c) có đồ thị như hình vẽ bên. Tìm khẳng định đúng trong các (ảnh 1)

Xem đáp án » 27/06/2023 65

Câu 13:

Cho hình hộp chữ nhật ABCD.A’B’C’D’ \(AB = a,\,\,AD = \sqrt 2 a,\,\,AC' = 2\sqrt 3 a\). Tính theo a thể tích V của khối hộp ABCD.A’B’C’D’.

Xem đáp án » 27/06/2023 65

Câu 14:

Với a, b, c là các số thực dương, a c khác 1 và \(\alpha \ne 0\). Mệnh đề nào dưới đây sai?

Xem đáp án » 27/06/2023 64

Câu 15:

Số đường tiệm cận ngang của đồ thị hàm số \(y = x + 1 + \sqrt {{x^2} + 2x + 3} \)

Xem đáp án » 27/06/2023 64

Câu hỏi mới nhất

Xem thêm »
Xem thêm »