Phương trình (1): \(f\left( {\left| x \right|} \right) - m = 0\)\( \Leftrightarrow f\left( {\left| x \right|} \right) = m\).
Số nghiệm của phương trình (1) là số điểm chung của hai đồ thị: \(\left( C \right):y = f\left( {\left| x \right|} \right)\) và \(\left( d \right):y = m\).
Hàm số \(y = f\left( {\left| x \right|} \right)\)là hàm số chẵn \( \Rightarrow \left( C \right)\) nhận trục Oy làm trục đối xứng.
Mà \(y = f\left( {\left| x \right|} \right) = \left\{ {\begin{array}{*{20}{c}}{f\left( x \right)khix \ge 0}\\{f\left( { - x} \right)khix < 0}\end{array}} \right.\).
\( \Rightarrow \) Bảng biến thiên của hàm số \(y = f\left( {\left| x \right|} \right)\):
Dựa vào bảng biến thiên ta có: phương trình (1) có 4 nghiệm phân biệt \( \Leftrightarrow m \in \left( { - 3;5} \right)\).
Mà \(m \in \mathbb{Z}\)\( \Rightarrow m \in \left\{ { - 2; - 1;0;1;2;3;4} \right\} \Rightarrow \)Có 7 giá trị m thỏa mãn.
Cho hình chóp S.ABCDcó mặt phẳng (SAB)vuông góc với mặt phẳng (ABCD), tam giác SABvuông cân tại S, ABCDlà hình vuông cạnh 2a. Thể tích khối chóp S.ABCDlà
Cho lăng trụ tam giác đều \(ABC \cdot A'B'C'\). Tam giác \(ABC'\)có diện tích bằng \(8\)và hợp với mặt phẳng đáy một góc có số đo \({30^^\circ }\). Tính thể tích của khối lăng trụ.
Số giá trị nguyên của tham số \(m \in \left[ { - 10;10} \right]\) để bất phương trình \(4{\sin ^2}x - 4\cos x \le 4{m^2} - 4m + 5\)nghiệm đúng với mọi \(x \in \left[ {0;\pi } \right]\) là
Có bao nhiêu giá trị nguyên của tham số\(m\) để hàm số \(y = - \frac{1}{3}{x^3} + m{x^2} + \left( {{m^2} - 2} \right)x + 2019\) đạt cực đại tại \(x = 1\)?
Cho hàm số \[y = f\left( x \right)\] liên tục trên \[\left[ { - 1;4} \right]\] và có đồ thị như hình vẽ bên. Gọi \[M\] và \[m\] lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số trên \[\left[ { - 1;4} \right]\]. Giá trị của \[M + 2m\] bằng
Tổng giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = \frac{{x + m}}{{x + 1}}\) trên đoạn \(\left[ {1;2} \right]\) bằng 8 với \(m\) là tham số thực). Khẳng định nào sau đây là đúng?