Thứ sáu, 22/11/2024
IMG-LOGO

Câu hỏi:

10/07/2024 54

Từ một tấm tôn hình chữ nhất có chiều dài và rộng là 60cm, 40cm. Người ta cắt đi 6 hình vuông cạnh \(x\left( {cm} \right)\) rồi gấp tấm tôn còn lại để được một cái hộp có nắp như hình vẽ dưới đây. Tìm x để hộp nhận được có thể tích lớn nhất.
 

A. \(\frac{{20}}{3}\left( {cm} \right)\)

Đáp án chính xác

B. \(\frac{{10}}{3}\left( {cm} \right)\)

C. \(4\left( {cm} \right)\)


D. \(5\left( {cm} \right)\)


Trả lời:

verified Giải bởi Vietjack

Đáp án A

Phương pháp:

Lập hàm số tính thể tích khối hộp theo biến x, khảo sát tìm x để hộp nhận được có thể tích lớn nhất.

Cách giải:

Sau khi cắt, độ dài 2 chiều của đáy là: \(40 - 2x,\,\,\,\frac{{60 - 3x}}{2}\left( {cm} \right),\,\,x \in \left( {0;20} \right)\)

Thể tích khối hộp: \(V = x\left( {40 - 2x} \right).\frac{{60 - 3x}}{2} = 3x{\left( {20 - x} \right)^2} = f\left( x \right)\)

\(f'\left( x \right) = 3{\left( {20 - x} \right)^2} - 3x.2\left( {20 - x} \right) = 3 = 3.\left( {20 - x} \right)\left( {20 - 3x} \right)\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 20\left( L \right)\\x = \frac{{20}}{3}\end{array} \right.\)

Bảng biến thiên:

Từ một tấm tôn hình chữ nhất có chiều dài và rộng là 60cm, 40cm. Người ta cắt đi 6 hình  (ảnh 1)

Vậy \(x = \frac{{20}}{3}\) thì hộp nhận được có thể tích lớn nhất.

Câu trả lời này có hữu ích không?

0

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1:

Xét các số thực a, b thỏa mãn \({\log _3}\left( {\frac{{1 - ab}}{{a + 2b}}} \right) = 3ab + a + 2b - 4\). Tìm giá trị nhỏ nhất của biểu thức \(P = a + b\)

Xem đáp án » 28/06/2023 144

Câu 2:

Tính tích các nghiệm của phương trình \({\log _2}x.{\log _4}x.{\log _8}x.{\log _{16}}x = \frac{{81}}{{24}}\)

Xem đáp án » 28/06/2023 85

Câu 3:

Cho a, b là hai số dương khác 1. Đặt \({\log _a}b = m\). Tính theo m giá trị của biểu thức \(P = {\log _a}b - {\log _{\sqrt b }}{a^3}\)

Xem đáp án » 27/06/2023 82

Câu 4:

Tìm khoảng nghịch biến của hàm số \(y = {x^3} + 3{x^2} + 2\)

Xem đáp án » 27/06/2023 77

Câu 5:

Cho các số thực \(a,\,b,\,x > 0\)\(b,\,x \ne 1\) thỏa mãn \({\log _x}\frac{{a + 2b}}{3} = {\log _x}\sqrt a + {\log _x}\sqrt b \). Tính giá trị của biểu thức \(P = \left( {2{a^2} + 3ab + {b^2}} \right){\left( {a + 2b} \right)^{ - 2}}\) khi \(a > b\)

Xem đáp án » 28/06/2023 75

Câu 6:

Tìm tất cả các giá trị của tham số m để hàm số \(y = {\left( {\frac{2}{\pi }} \right)^{{x^3} + 3m{x^2} + 3mx + 10}}\) nghịch biến trên khoảng \(\left( {0; + \infty } \right)\)

Xem đáp án » 28/06/2023 74

Câu 7:

Tìm tập nghiệm của bất phương trình \({\log _x}125x + {\log _{24}}x > \frac{3}{2} + \log _5^2x\)

Xem đáp án » 28/06/2023 73

Câu 8:

Tìm tất cả các giá trị thực của tham số m để phương trình \({\log _2}\left( {{5^x} - 1} \right).{\log _4}\left( {{{2.5}^x}} \right) - 2 = m\) có nghiệm \(x \ge 1\)

Xem đáp án » 28/06/2023 72

Câu 9:

Cho hình chóp tứ giác đều S.ABCD có cạnh đáy bằng \(a\sqrt 3 \), góc \(ASB = {60^0}\). Tính thể tích của khối nón đỉnh S có đáy là đường tròn ngoại tiếp tứ giác ABCD.

Xem đáp án » 27/06/2023 71

Câu 10:

Hàm số \(y = \left( {{x^2} - 2x + 1} \right){e^{2x}}\) nghịch biến trên khoảng nào sau đây?

Xem đáp án » 28/06/2023 70

Câu 11:

Tìm số đường tiệm cận của đồ thị hàm số \(y = \frac{{5x + 11}}{{\sqrt {3{x^2} + 2017} }}\)

Xem đáp án » 27/06/2023 69

Câu 12:

Ông A vay ngân hàng 300 triệu đồng để mua nhà theo phương thức trả góp với lãi suất 0,5% mỗi tháng. Nếu cuối mỗi tháng, bắt đầu từ tháng thứ nhất ông hoàn nợ cho ngân hàng 4.500.000 đồng và chịu lãi số tiền chưa trả. Hỏi sau bao nhiêu tháng ông A sẽ trả hết số tiền vay?

Xem đáp án » 28/06/2023 69

Câu 13:

Tìm tất cả các giá trị thực của tham số m để đường thẳng \(y = - mx\) cắt đồ thị hàm số \(y = {x^3} - 3{x^2} - m + 2\) tại ba điểm A, B, C phân biệt sao cho \(AB = BC\).

Xem đáp án » 28/06/2023 67

Câu 14:

Tìm giá trị cực tiểu \({y_{CT}}\) của hàm số \(y = - {x^4} + 2{x^2} + 2\)

Xem đáp án » 27/06/2023 66

Câu 15:

Tính giá trị nhỏ nhất M của hàm số \(y = - {x^3} + 3{x^2} + 2\) trên đoạn \(\left[ {1;3} \right]\)

Xem đáp án » 27/06/2023 65

Câu hỏi mới nhất

Xem thêm »
Xem thêm »