Cho hình trụ có trục \(OO' = 2\sqrt 7 \), ABCD là hình vuông có cạnh bằng 8 sao cho các đỉnh nằm trên đường tròn đáy và tâm hình vuông trùng với trung điểm OO’. Thể tích khối trụ là:
D. \(25\pi \sqrt {14} \)
Đáp án B
Phương pháp:
Sử dụng công thức tính thể tích khối trụ \(V = \pi {R^2}h\)
Cách giải:
Gọi H, K lần lượt là trug điểm của AB và CD suy ra HK đi qua tâm của hình vuông ABCD và ta có \(MK = \frac{1}{2}AB = 4\).
OO’ là trục của hình trụ nên OO’ vuông góc với 2 mặt đáy.
\( \Rightarrow OO' \bot OK \Rightarrow OK = \sqrt {M{K^2} - M{O^2}} = 3\)
Vì K là trung điểm của AB \( \Rightarrow OK \bot AB\) (quan hệ vuông góc giữa đường kính và dây cung)
Xét tam giác vuông OKB \( \Rightarrow OB = \sqrt {O{K^2} + K{B^2}} = 5 = R\)
Vậy \(V = \pi {R^2}h = \pi {.5^2}.2\sqrt 7 = 50\pi \sqrt 7 \)
Gọi n, d lần lượt là số tiệm cận ngang và số tiệm cận đứng của đồ thị hàm số \(y = \frac{{\sqrt {{x^2} + 1} }}{x}\). Tính giá trị của \(T = 2n + 3d\)?
Số nghiệm nguyên của bất phương trình \(\log \left( {2{x^2} - 11x + 25} \right) \le 1\) là:
Cắt hình nón \(\left( N \right)\) có đỉnh S bởi một mặt phẳng chứa trục hình nón ta dược một tam giác vuông cân có cạnh huyền bằng \(a\sqrt 2 \); BC là một dây cung của hình tròn đáy của \(\left( N \right)\) sao cho mặt phẳng \(\left( {SBC} \right)\) tạo với đáy góc \({60^0}\). Tính diện tích S của tam giác SBC.
Cho hình vuông ABCD có cạnh bằng 4. Tính tỉ số thể tích của hai khối tròn xoay sinh ra khi lần lượt quay hình vuông đã cho quanh các đường chứa cạnh AB và đường chéo AC của hình vuông?
Cho hình chóp S.ABC có \(SA = a;\,\,\,SB = a\sqrt 2 ;\,\,\,SC = a\sqrt 3 \). Tính thể tích lớn nhất \({V_{max}}\) của khối chóp đã cho?
Cho khối chóp S.ABC có \(SA \bot \left( {ABC} \right),\,\,SA = a\), đáy ABC là tam giác đều cạnh a. Tính thể tích V của khối tứ diện S.ABC?
Thể tích khối hộp chữ nhật có ba cạnh xuất phát từ một đỉnh lần lượt có độ dài a, b, c là :
Cho khối chóp S.ABCD có thể tích bằng 81. Gọi M, N, P lần lượt là trọng tâm các mặt bên \(\left( {SAB} \right);\,\left( {SBC} \right);\,\left( {SCD} \right);\,\left( {SDC} \right)\). Tính thể tích V của khối chóp S.MNPQ?
Hàm số \(y = \frac{1}{3}{x^3} - \frac{1}{2}m{x^2} + \frac{1}{2}\) đạt cực tiểu tại \(x = 2\) khi m nhận giá trị nào sau đây?
Cho lăng trụ đứng ABC.A’B’C’ có tất cả các cạnh bằng a. Tính thể tích của khối tứ diện A’B’AC.
Cho hàm số \(y = {x^4} - 2{x^2} + 1\) biết \(\left( {a;b} \right)\) là khoảng nghịch biến ngắn nhất của hàm số với \(a,\,b \in Z\). Tính giá trị của \(5 - b\) là:
Cho hàm số \(y = \frac{{2x + 3}}{{x - 1}}\) có đồ thị \(\left( C \right)\). Tiếp tuyến của \(\left( C \right)\) tại điểm có hoành độ bằng 2 cắt các trục Ox, Oy tại các điểm \(A\left( {a;0} \right);\,\,B\left( {0;b} \right)\). Khi đó giá trị của \(P = 5a + b\) là:
Một người gửi tiền vào ngân hàng 100 triệu đồng thể thức lãi kép, kỳ hạn là 1 tháng với lãi suất 0,5% một tháng. Hỏi sau ít nhất bao nhiêu tháng, người đó có nhiều hơn 125 triệu đồng?