Cho khối chóp S.ABCD có đáy là hình vuông cạnh a, SA vuông góc với mặt phẳng đáy và khoảng cách từ A đến mặt phẳng \(\left( {SBC} \right)\) bằng \(\frac{{a\sqrt 2 }}{2}\). Gọi M là điểm thuộc cạnh SD sao cho \(\overrightarrow {SM} = 3\overrightarrow {MD} \). Mặt phẳng \(\left( {ABM} \right)\) cắt cạnh SC tại điểm N. Thể tích khối đa diện MNABCD bằng
D. \(\frac{{11{a^3}}}{{96}}\)
Đáp án D
Phương pháp:
+) Xác định điểm N.
+) Phân chia và lắp ghép các khối đa diện.
Cách giải:
Kẻ \(AH \bot SB \Rightarrow d\left( {A;\left( {SBC} \right)} \right) = AH = \frac{{a\sqrt 2 }}{2} \Rightarrow \Delta SAB\) vuông cân tại A \( \Rightarrow SA = a\)
\( \Rightarrow {V_{S.ABCD}} = \frac{1}{3}.SA.{S_{ABCD}} = \frac{1}{3}.a.{a^2} = \frac{{{a^3}}}{3}\)
Kẻ \(MN//CD \Rightarrow \frac{{SM}}{{SD}} = \frac{{SN}}{{SC}} = \frac{3}{4}\)
Ta có: \({V_{S.ABD}} = {V_{S.BCD}} = \frac{1}{2}{V_{S.ABCD}}\)
\(\frac{{{V_{S.AMNB}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.ABM}} + {V_{S.BMN}}}}{{2{V_{S.ABD}}}} = \frac{1}{2}\left( {\frac{{{V_{S.ABM}}}}{{{V_{S.ABD}}}} + \frac{{{V_{S.BMN}}}}{{{V_{S.BCD}}}}} \right) = \frac{1}{2}\left( {\frac{{SM}}{{SD}} + \frac{{SM}}{{SD}}.\frac{{SN}}{{SC}}} \right) = \frac{1}{2}\left( {\frac{3}{4} + \frac{3}{4}.\frac{3}{4}} \right) = \frac{{21}}{{32}}\)\( \Rightarrow \frac{{{V_{MNABCD}}}}{{{V_{S.ABCD}}}} = \frac{{{V_{S.ABCD}} - {V_{S.AMNB}}}}{{{V_{S.ABCD}}}} = 1 - \frac{{{V_{S.AMNB}}}}{{{V_{S.ABCD}}}} = 1 - \frac{{21}}{{32}} = \frac{{11}}{{32}}\)
Vậy \({V_{MNABCD}} = \frac{{11}}{{32}}{V_{S.ABCD}} = \frac{{11}}{{32}}.\frac{{{a^3}}}{3} = \frac{{11{a^3}}}{{96}}\)Cho hàm số \(y = f\left( x \right)\) có đạo hàm là hàm số liên tục trên R với đồ thị hàm số \(y = f'\left( x \right)\) như hình vẽ. Biết \(f\left( a \right) > 0\), hỏi đồ thị hàm số \(y = f\left( x \right)\) cắt trục hoành tại nhiều nhất bao nhiêu điểm?
Có tất cả bao nhiêu giá trị nguyên dương của tham số m để hàm số \(y = \left( {1 - m} \right){x^4} + 2\left( {m + 3} \right){x^2} + 1\) có đúng một điểm cực tiểu và không có điểm cực đại?
Gọi M, m lần lượt là giá trị lớn nhất và giá trị nhỏ nhất của hàm số \(y = {x^3} - 3{x^2} - 9x + 1\) trên đoạn \(\left[ {0;4} \right]\). Ta có \(m + 2M\) bằng:
Hàm số \(y = \frac{1}{3}{x^3} - 2{x^2} + 3x - 1\) nghịch biến trên khoảng nào trong các khoảng sau đây?
Rút gọn biểu thức \(A = {a^{4{{\log }_{{a^2}}}3}}\) với \(0 < a \ne 1\) ta được kết quả là
Khoảng cách giữa hai điểm cực trị của đồ thị hàm số \(y = {x^3} + 3{x^2} - 4\) là
Số điểm chung của đồ thị hàm số \(y = {x^3} - 2{x^2} + x - 12\) với trục là Ox
Rút gọn biểu thức \(A = \frac{{\sqrt[3]{{{a^5}}}.{a^{\frac{7}{3}}}}}{{{a^4}.\sqrt[7]{{{a^{ - 2}}}}}}\) với \(a > 0\) ta được kết quả \(A = {a^{\frac{m}{n}}}\), trong đó \(m,\,n \in \mathbb{N}*\) và \(\frac{m}{n}\) là phân số tối giản. Khẳng định nào sau đây đúng?
Đồ thị hàm số \(y = \frac{{\sqrt {1 - {x^2}} }}{{{x^2} + 2x}}\) có tất cả bao nhiêu tiệm cận đứng?
Tìm tất cả các giá trị thực của x thỏa mãn đẳng thức \({\log _3}x = 3{\log _3}2 + {\log _9}25 - {\log _{\sqrt 3 }}3\)
Gọi \({m_0}\) là giá trị thực của tham số để đồ thị hàm số \(y = {x^4} + 2m{x^2} + 4\) có 3 điểm cực trị nằm trên các trục tọa độ. Khẳng định nào sau đây là đúng?
Giá trị lớn nhất của hàm số \(y = {x^3} - 3x + 5\) trên đoạn \(\left[ {0;\frac{3}{2}} \right]\)
Cho tứ diện OABC có OA, OB, OC đôi một vuông góc với nhau. Biết \(OA = a,\,\,OB = 2a\) , và đường thẳng AC tạo với mặt phẳng \(\left( {OBC} \right)\) một góc \({60^0}\). Thể tích khối tứ diện OABC bằng
Cho \(0 < a \ne 1\) và \(b \in R\). Chọn mệnh đề sai trong các mệnh đề sau: